
TEX by Topic, A TEXnician’s Reference

Victor Eijkhout

document revision 1.4, December 2013

1

Copyright © 1991-2013 Victor Eijkhout.
Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2 or any later ver-
sion published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled ”GNU Free Documentation License”.

This document is based on the book TEX by Topic, copyright 1991-2008 Victor
Eijkhout. This book was printed in 1991 by Addison-Wesley UK, ISBN 0-201-
56882-9, reprinted in 1993, pdf version first made freely available in 2001.

Cover design (lulu.com version): Joanna K. Wozniak (jokwoz@gmail.com)

目录

许可证 · · · · · · · · · · · · · · · 9

前言 · · · · · · · · · · · · · · · · 17

1 TEX 处理器的结构· · · · · · · · · · · · · 19
1.1 TEX 的 4 个处理器 · · · · · · · · · · · 19
1.2 输入处理器 · · · · · · · · · · · · · 20
1.3 展开处理器 · · · · · · · · · · · · · 21
1.4 执行处理器 · · · · · · · · · · · · · 23
1.5 可视化处理器 · · · · · · · · · · · · 24
1.6 示例 · · · · · · · · · · · · · · 24

2 类别码与内部状态 · · · · · · · · · · · · · 26
2.1 概述 · · · · · · · · · · · · · · 26
2.2 初始处理 · · · · · · · · · · · · · 26
2.3 类别码 · · · · · · · · · · · · · · 27
2.4 从字符到记号 · · · · · · · · · · · · 29
2.5 输入处理器视为有限状态自动机 · · · · · · · · 29
2.6 所有字符皆可信手拈来 · · · · · · · · · · 30
2.7 内部状态切换 · · · · · · · · · · · · 31
2.8 字母符与其他字符 · · · · · · · · · · · 32
2.9 \par 记号 · · · · · · · · · · · · · 33
2.10 空格 · · · · · · · · · · · · · · 34
2.11 行结束符的更多知识 · · · · · · · · · · · 37
2.12 输入处理器的更多知识 · · · · · · · · · · 38
2.13 @ 约定 · · · · · · · · · · · · · · 40

3 字符 · · · · · · · · · · · · · · · · 41
3.1 字符编码 · · · · · · · · · · · · · 41
3.2 用于字符的控制序列 · · · · · · · · · · · 42
3.3 Accents · · · · · · · · · · · · · 45

2

目录 3

3.4 Testing characters · · · · · · · · · · · 46
3.5 Uppercase and lowercase · · · · · · · · · · 46
3.6 Codes of a character · · · · · · · · · · · 48
3.7 Converting tokens into character strings · · · · · · · 48

4 Fonts · · · · · · · · · · · · · · · 50
4.1 Fonts · · · · · · · · · · · · · · 50
4.2 Font declaration · · · · · · · · · · · · 51
4.3 Font information · · · · · · · · · · · · 52

5 Boxes · · · · · · · · · · · · · · · 56
5.1 Boxes · · · · · · · · · · · · · · 57
5.2 Box registers · · · · · · · · · · · · 58
5.3 Natural dimensions of boxes · · · · · · · · · 60
5.4 More about box dimensions · · · · · · · · · 63
5.5 Overfull and underfull boxes · · · · · · · · · 66
5.6 Opening and closing boxes· · · · · · · · · · 67
5.7 Unboxing · · · · · · · · · · · · · 68
5.8 Text in boxes · · · · · · · · · · · · 69
5.9 Assorted remarks· · · · · · · · · · · · 70

6 Horizontal and Vertical Mode · · · · · · · · · · 74
6.1 Horizontal and vertical mode · · · · · · · · · 74
6.2 Horizontal and vertical commands · · · · · · · · 76
6.3 The internal modes · · · · · · · · · · · 77
6.4 Boxes and modes · · · · · · · · · · · 77
6.5 Modes and glue · · · · · · · · · · · · 78
6.6 Migrating material · · · · · · · · · · · 79
6.7 Testing modes · · · · · · · · · · · · 80

7 Numbers · · · · · · · · · · · · · · · 82
7.1 Numbers and ⟨number⟩s · · · · · · · · · · 82
7.2 Integers · · · · · · · · · · · · · 83
7.3 Numbers · · · · · · · · · · · · · 86
7.4 Integer registers · · · · · · · · · · · · 87
7.5 Arithmetic · · · · · · · · · · · · · 87
7.6 Number testing · · · · · · · · · · · · 89
7.7 Remarks · · · · · · · · · · · · · 89

8 Dimensions and Glue · · · · · · · · · · · · 91
8.1 Definition of ⟨glue⟩ and ⟨dimen⟩ · · · · · · · · 92
8.2 More about dimensions · · · · · · · · · · 96

4 目录

8.3 More about glue · · · · · · · · · · · · 98

9 Rules and Leaders · · · · · · · · · · · · 104
9.1 Rules · · · · · · · · · · · · · · 104
9.2 Leaders· · · · · · · · · · · · · · 106
9.3 Assorted remarks· · · · · · · · · · · · 109

10 编组 · · · · · · · · · · · · · · · · 112
10.1 编组机制 · · · · · · · · · · · · · 112
10.2 局部和全局赋值 · · · · · · · · · · · · 113
10.3 编组定界符 · · · · · · · · · · · · · 113
10.4 花括号进阶 · · · · · · · · · · · · · 114

11 宏定义 · · · · · · · · · · · · · · · 116
11.1 介绍 · · · · · · · · · · · · · · 116
11.2 宏定义的结构 · · · · · · · · · · · · 117
11.3 前缀 · · · · · · · · · · · · · · 117
11.4 定义的类型 · · · · · · · · · · · · · 118
11.5 参数文本 · · · · · · · · · · · · · 118
11.6 构造控制序列 · · · · · · · · · · · · 122
11.7 用 \let 和 \futurelet 给出记号赋值 · · · · · · · 123
11.8 杂项注记 · · · · · · · · · · · · · 124
11.9 宏的技巧 · · · · · · · · · · · · · 126

12 Expansion · · · · · · · · · · · · · · 131
12.1 Introduction · · · · · · · · · · · · · 131
12.2 Ordinary expansion · · · · · · · · · · · 132
12.3 Reversing expansion order · · · · · · · · · · 133
12.4 Preventing expansion · · · · · · · · · · · 136
12.5 \relax· · · · · · · · · · · · · · 137
12.6 Examples · · · · · · · · · · · · · 141

13 Conditionals · · · · · · · · · · · · · · 148
13.1 The shape of conditionals · · · · · · · · · · 149
13.2 Character and control sequence tests · · · · · · · 149
13.3 Mode tests · · · · · · · · · · · · · 151
13.4 Numerical tests · · · · · · · · · · · · 151
13.5 Other tests · · · · · · · · · · · · · 151
13.6 The \newif macro · · · · · · · · · · · 153
13.7 Evaluation of conditionals · · · · · · · · · · 154
13.8 Assorted remarks· · · · · · · · · · · · 155

目录 5

14 Token Lists · · · · · · · · · · · · · · 162
14.1 Token lists · · · · · · · · · · · · · 162
14.2 Use of token lists· · · · · · · · · · · · 162
14.3 ⟨token parameter⟩ · · · · · · · · · · · 163
14.4 Token list registers · · · · · · · · · · · 163
14.5 Examples · · · · · · · · · · · · · 164

15 基线距离 · · · · · · · · · · · · · · · 167
15.1 行间粘连 · · · · · · · · · · · · · 167
15.2 盒子深度 · · · · · · · · · · · · · 169
15.3 术语 · · · · · · · · · · · · · · 170
15.4 补充说明 · · · · · · · · · · · · · 170

16 Paragraph Start · · · · · · · · · · · · · 172
16.1 When does a paragraph start · · · · · · · · · 172
16.2 What happens when a paragraph starts · · · · · · · 173
16.3 Assorted remarks· · · · · · · · · · · · 173
16.4 Examples · · · · · · · · · · · · · 174

17 Paragraph End · · · · · · · · · · · · · 178
17.1 The way paragraphs end · · · · · · · · · · 178
17.2 Assorted remarks· · · · · · · · · · · · 179

18 段落形状 · · · · · · · · · · · · · · · 182
18.1 文本行的宽度 · · · · · · · · · · · · 183
18.2 段落形状参数 · · · · · · · · · · · · 183
18.3 杂项注记 · · · · · · · · · · · · · 184

19 Line Breaking · · · · · · · · · · · · · 188
19.1 Paragraph break cost calculation · · · · · · · · 189
19.2 The process of breaking · · · · · · · · · · 193
19.3 Discretionaries · · · · · · · · · · · · 194
19.4 Hyphenation · · · · · · · · · · · · 195
19.5 Switching hyphenation patterns· · · · · · · · · 197

20 Spacing · · · · · · · · · · · · · · · 199
20.1 Introduction · · · · · · · · · · · · · 199
20.2 Automatic interword space· · · · · · · · · · 200
20.3 User interword space · · · · · · · · · · · 200
20.4 Control space and tie · · · · · · · · · · · 201
20.5 More on the space factor · · · · · · · · · · 202

6 目录

21 Characters in Math Mode · · · · · · · · · · · 205
21.1 Mathematical characters · · · · · · · · · · 206
21.2 Delimiters · · · · · · · · · · · · · 207
21.3 Radicals · · · · · · · · · · · · · 209
21.4 Math accents · · · · · · · · · · · · 210

22 Fonts in Formulas· · · · · · · · · · · · · 211
22.1 Determining the font of a character in math mode · · · · · 211
22.2 Initial family settings · · · · · · · · · · · 212
22.3 Family definition · · · · · · · · · · · · 212
22.4 Some specific font changes · · · · · · · · · 213
22.5 Assorted remarks· · · · · · · · · · · · 214

23 Mathematics Typesetting · · · · · · · · · · · 215
23.1 Math modes · · · · · · · · · · · · 217
23.2 Styles in math mode · · · · · · · · · · · 217
23.3 Classes of mathematical objects · · · · · · · · 219
23.4 Large operators and their limits· · · · · · · · · 220
23.5 Vertical centring: \vcenter · · · · · · · · · 221
23.6 Mathematical spacing: mu glue · · · · · · · · · 221
23.7 Generalized fractions · · · · · · · · · · · 223
23.8 Underlining, overlining · · · · · · · · · · 224
23.9 Line breaking in math formulas · · · · · · · · · 224
23.10 Font dimensions of families 2 and 3 · · · · · · · · 224

24 Display Math · · · · · · · · · · · · · · 227
24.1 Displays · · · · · · · · · · · · · 227
24.2 Displays in paragraphs · · · · · · · · · · 228
24.3 Vertical material around displays · · · · · · · · 228
24.4 Glue setting of the display math list · · · · · · · · 229
24.5 Centring the display formula: displacement · · · · · · 230
24.6 Equation numbers · · · · · · · · · · · 230
24.7 Non-centred displays · · · · · · · · · · · 231

25 Alignment · · · · · · · · · · · · · · 233
25.1 Introduction · · · · · · · · · · · · · 233
25.2 Horizontal and vertical alignment · · · · · · · · 234
25.3 The preamble · · · · · · · · · · · · 235
25.4 The alignment · · · · · · · · · · · · 237
25.5 Example: math alignments· · · · · · · · · · 241

目录 7

26 Page Shape · · · · · · · · · · · · · · 243
26.1 The reference point for global positioning · · · · · · 243
26.2 \topskip · · · · · · · · · · · · · 243
26.3 Page height and depth · · · · · · · · · · 244

27 分页 · · · · · · · · · · · · · · · · 246
27.1 当前页面与备选内容 · · · · · · · · · · · 247
27.2 激活页面构建器 · · · · · · · · · · · · 247
27.3 页面长度的记录 · · · · · · · · · · · · 247
27.4 分页点 · · · · · · · · · · · · · · 248
27.5 分割竖直列 · · · · · · · · · · · · · 250
27.6 分页的例子 · · · · · · · · · · · · · 251

28 Output Routines · · · · · · · · · · · · · 254
28.1 The \output token list · · · · · · · · · · 254
28.2 Output and \box255 · · · · · · · · · · · 255
28.3 Marks · · · · · · · · · · · · · · 256
28.4 Assorted remarks· · · · · · · · · · · · 257

29 Insertions · · · · · · · · · · · · · · 261
29.1 Insertion items · · · · · · · · · · · · 261
29.2 Insertion class declaration · · · · · · · · · · 262
29.3 Insertion parameters · · · · · · · · · · · 262
29.4 Moving insertion items from the contributions list · · · · · 263
29.5 Insertions in the output routine · · · · · · · · · 264
29.6 Plain TEX insertions · · · · · · · · · · · 265

30 File Input and Output · · · · · · · · · · · · 266
30.1 Including files: \input and \endinput · · · · · · · 266
30.2 File I/O · · · · · · · · · · · · · 267
30.3 Whatsits · · · · · · · · · · · · · 269
30.4 Assorted remarks· · · · · · · · · · · · 269

31 Allocation · · · · · · · · · · · · · · 272
31.1 Allocation commands · · · · · · · · · · · 273
31.2 Ground rules for macro writers · · · · · · · · · 274

32 Running TEX · · · · · · · · · · · · · · 275
32.1 Jobs · · · · · · · · · · · · · · 275
32.2 Run modes · · · · · · · · · · · · · 277

8 目录

33 TEX and the Outside World · · · · · · · · · · 278
33.1 TEX, IniTEX, VirTEX · · · · · · · · · · · 278
33.2 More about formats · · · · · · · · · · · 281
33.3 The dvi file · · · · · · · · · · · · · 283
33.4 Specials · · · · · · · · · · · · · 284
33.5 Time · · · · · · · · · · · · · · 285
33.6 Fonts · · · · · · · · · · · · · · 285
33.7 TEX and web · · · · · · · · · · · · 287
33.8 The TEX Users Group · · · · · · · · · · · 288

34 Tracing · · · · · · · · · · · · · · · 289
34.1 Meaning and content: \show, \showthe, \meaning · · · · 290
34.2 Show boxes: \showbox, \tracingoutput · · · · · · 291
34.3 Global statistics · · · · · · · · · · · · 293

35 Errors, Catastrophes, and Help· · · · · · · · · · 294
35.1 Error messages · · · · · · · · · · · · 294
35.2 Overflow errors · · · · · · · · · · · · 296

36 The Grammar of TEX · · · · · · · · · · · · 300
36.1 Notations · · · · · · · · · · · · · 300
36.2 Keywords · · · · · · · · · · · · · 301
36.3 Specific grammatical terms · · · · · · · · · 301
36.4 Differences between TEX versions 2 and 3 · · · · · · 303

37 Glossary of TEX Primitives· · · · · · · · · · · 304

38 编码表格 · · · · · · · · · · · · · · · 324
38.1 字符编码表 · · · · · · · · · · · · · 325
38.2 计算机现代字体 · · · · · · · · · · · · 327
38.3 Plain TEX 数学符号 · · · · · · · · · · · 332

索引 · · · · · · · · · · · · · · · · 338

参考文献 · · · · · · · · · · · · · · · 343

版本历史 · · · · · · · · · · · · · · · 347

GNU 自由文档许可证

Version 1.2, November 2002

Copyright © 2000,2001,2002 Free Software Foundation, Inc. 51 Franklin
St, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy
and distribute verbatim copies of this license document, but changing it is not
allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document ”free” in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves
for the author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of ”copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program should
come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book.
We recommend this License principally for works whose purpose is instruction
or reference.

9

10 GNU 自由文档许可证

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed
under the terms of this License. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions stated
herein. The ”Document”, below, refers to any such manual or work. Any mem-
ber of the public is a licensee, and is addressed as ”you”. You accept the license
if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A ”Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or au-
thors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus,
if the Document is in part a textbook of mathematics, a Secondary Section may
not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says that
the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant.
The Document may contain zero Invariant Sections. If the Document does not
identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the Doc-
ument is released under this License. A Front-Cover Text may be at most 5
words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for draw-
ings) some widely available drawing editor, and that is suitable for input to
text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format

GNU 自由文档许可证 11

whose markup, or absence of markup, has been arranged to thwart or discour-
age subsequent modification by readers is not Transparent. An image format
is not Transparent if used for any substantial amount of text. A copy that is
not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML us-
ing a publicly available DTD, and standard-conforming simple HTML, PostScript
or PDF designed for human modification. Examples of transparent image for-
mats include PNG, XCF and JPG. Opaque formats include proprietary formats
that can be read and edited only by proprietary word processors, SGML or XML
for which the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word proces-
sors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, ”Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following text that
translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as ”Acknowledgements”, ”Dedications”, ”Endorse-
ments”, or ”History”.) To ”Preserve the Title” of such a section when you modify
the Document means that it remains a section ”Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty Disclaimers
are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers
may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the read-

12 GNU 自由文档许可证

ing or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed
covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry,
clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and leg-
ibly identify you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent copy
along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy
of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute
an Opaque copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the Doc-
ument well before redistributing any large number of copies, to give them a
chance to provide you with an updated version of the Document.

GNU 自由文档许可证 13

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from
that of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version
gives permission. B. List on the Title Page, as authors, one or more persons
or entities responsible for authorship of the modifications in the Modified Ver-
sion, together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release you from
this requirement. C. State on the Title page the name of the publisher of the
Modified Version, as the publisher. D. Preserve all the copyright notices of
the Document. E. Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices. F. Include, immediately after the copy-
right notices, a license notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in the Addendum
below. G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice. H. Include
an unaltered copy of this License. I. Preserve the section Entitled ”History”,
Preserve its Title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If
there is no section Entitled ”History” in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the previous
sentence. J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on. These
may be placed in the ”History” section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission. K. For any sec-
tion Entitled ”Acknowledgements” or ”Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the

14 GNU 自由文档许可证

contributor acknowledgements and/or dedications given therein. L. Preserve
all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section
titles. M. Delete any section Entitled ”Endorsements”. Such a section may not
be included in the Modified Version. N. Do not retitle any existing section to
be Entitled ”Endorsements” or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers. If the Modified Version includes new
front-matter sections or appendices that qualify as Secondary Sections and con-
tain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list
of Invariant Sections in the Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains noth-
ing but endorsements of your Modified Version by various parties–for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions, pro-
vided that you include in the combination all of the Invariant Sections of all of
the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their War-
ranty Disclaimers.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are

GNU 自由文档许可证 15

multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in
the various original documents, forming one section Entitled ”History”; likewise
combine any sections Entitled ”Acknowledgements”, and any sections Entitled
”Dedications”. You must delete all sections Entitled ”Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or distribution
medium, is called an ”aggregate” if the copyright resulting from the compila-
tion is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document
within the aggregate, or the electronic equivalent of covers if the Document is
in electronic form. Otherwise they must appear on printed covers that bracket
the whole aggregate.

16 GNU 自由文档许可证

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute

translations of the Document under the terms of section 4. Replacing Invari-
ant Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the Document, and any
Warranty Disclaimers, provided that you also include the original English ver-
sion of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of
this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedica-
tions”, or ”History”, the requirement (section 4) to Preserve its Title (section
1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as

expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the

GNU Free Documentation License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License ”or
any later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

前言

To the casual observer, TEX is not a state-of-the-art typesetting system.
No flashy multilevel menus and interactive manipulation of text and graphics
dazzle the onlooker. On a less superficial level, however, TEX is a very sophisti-
cated program, first of all because of the ingeniousness of its built-in algorithms
for such things as paragraph breaking and make-up of mathematical formulas,
and second because of its almost complete programmability. The combination
of these factors makes it possible for TEX to realize almost every imaginable
layout in a highly automated fashion.

Unfortunately, it also means that TEX has an unusually large number of
commands and parameters, and that programming TEX can be far from easy.
Anyone wanting to program in TEX, and maybe even the ordinary user, would
seem to need two books: a tutorial that gives a first glimpse of the many nuts
and bolts of TEX, and after that a systematic, complete reference manual. This
book tries to fulfil the latter function. A TEXer who has already made a start
(using any of a number of introductory books on the market) should be able to
use this book indefinitely thereafter.

In this volume the universe of TEX is presented as about forty different
subjects, each in a separate chapter. Each chapter starts out with a list of
control sequences relevant to the topic of that chapter and proceeds to treat the
theory of the topic. Most chapters conclude with remarks and examples.

Globally, the chapters are ordered as follows. The chapters on basic mech-
anisms are first, the chapters on text treatment and mathematics are next, and
finally there are some chapters on output and aspects of TEX’s connections to
the outside world. The book also contains a glossary of TEX commands, tables,
and indexes by example, by control sequence, and by subject. The subject index
refers for most concepts to only one page, where most of the information on that
topic can be found, as well as references to the locations of related information.

This book does not treat any specific TEX macro package. Any parts of the
plain format that are treated are those parts that belong to the ‘core’ of plain

17

18 前言

TEX: they are also present in, for instance, LATEX. Therefore, most remarks
about the plain format are true for LATEX, as well as most other formats. Putting
it differently, if the text refers to the plain format, this should be taken as a
contrast to pure IniTEX, not to LATEX. By way of illustration, occasionally macros
from plain TEX are explained that do not belong to the core.

Acknowledgment
I am indebted to Barbara Beeton, Karl Berry, and Nico Poppelier, who read pre-
vious versions of this book. Their comments helped to improve the presentation.
Also I would like to thank the participants of the discussion lists TEXhax, TEX-
nl, and comp.text.tex. Their questions and answers gave me much food for
thought. Finally, any acknowledgement in a book about TEX ought to include
Donald Knuth for inventing TEX in the first place. This book is no exception.

Victor Eijkhout
Urbana, Illinois, August 1991

Knoxville, Tennessee, May 2001
Austin, Texas, December 2013

第 1 章 TEX 处理器的结构

这本书覆盖了 TEX 多个方面的知识，其中每一章都对应着一个相对较小且易
于讲述的主题。不过，在开始各个主题之前，有必要对 TEX 的工作机理进行一个
概述，这就是本章的主题，显然其中许多细节应当忽略，留待后续各章讲述。另
外，为了内容的完整性，本章的末尾还会给出几份示例，它们在后续的一些章节中
还会被重提。

1.1 TEX 的 4 个处理器

TEX 处理输入的方式可分为 4 个层面。你可以认为 TEX 处理器（很多文档也
称为 TEX 引擎）是分成了 4 个独立的阶段，每个阶段都接受前一阶段的输出，其
处理结果则作为后一阶段的输入。第一个阶段的输入来自 .tex文件，最后一个阶
段的输出是 .dvi文件
通常而言，将上述的 4个层面理解为完整传承的 4个工作阶段比较直观且易于

理解，但事实上这种理解并不正确，因为这 4个层面是同时活动的，并且彼此之间
互通有无。

这 4 个层面（使用 Knuth 最初的术语，可分别大致理解为‘眼睛’、‘嘴巴’、
‘胃’和‘肠道’）如下：

1. 输入处理器：这是 TEX 从文件中接受文本行输入并将其处理为记号的部分。
记号是 TEX 的内部对象：有构成所排版文本的字符记号，有可被后续两个层
面作为命令进行处理的控制序列记号。

2. 展开处理器：在第一层面所产生的一些（并非全部）记号 – 宏、条件式以及
TEX的一些原始命令 –都是要被展开的目标。所谓展开，就是将一些记号序列
替换为其它记号的过程。

3. 执行处理器：那些不能再被进一步展开的控制序列在这一层会被执行。
这里需要关注的部分是 TEX 内部状态的变化：赋值（包括宏定义）是该层最
典型的行为，另外就是水平列、竖直列和数学列的构建。

4. 可视化处理器：在这一层面完成 TEX 排版内容的可视化。诸如水平列会被划

19

20 第 1 章 TEX 处理器的结构

分为段，竖直列会被划分为页，数学列会被构建为公式。此外此层面还会输出
dvi 文件【译注：对于现代 TEX 处理器而言，还可以是 pdf 和 xml 等文件】。
在这一层面工作的算法对于用户而言是不可见的，但是用户可通过一部分参数
去控制它们。

1.2 输入处理器

TEX 的输入处理器是 TEX 从输入文件所接受的任何字符翻译为记号的部分，
它输出记号流：记号列表。大部分记号可归为两类：字符记号与控制序列记号。还
有一类是参数记号，但本章不讨论它。

1.2.1 字符的输入

对于所输入的简单文本，字符会被直接转换为字符记号。不过，TEX会忽略这
样一些字符：将多个连续的空格符号仅视为一个空格。还有，TEX自身会向记号列
表中插入一些不太明显的记号，例如行尾的空格记号，每个空行之后的 \par记号。
字符可被输入处理器转换为字符记号，但是这并非意味着所有字符可被排印

（排版及印刷）。在 TEX中，字符被划分为 16类——每一类都有特定的功能——其
中仅有两类字符可被排印。其它字符类，像 {、}、&和 #，都是不可被排印的。一
个字符记号可视为一对数字：字符码和类别码。字符码通常使用 ascii编码。一个
字符对应的类别码是可以修改的。
有一种字符叫做转义字符，默认是 \。当这种字符出现在输入的文本中时，为

了生成它的记号，TEX输入处理器的行为会非常复杂。基本上，输入处理器会将尾
随于转义字符的字符序列处理为单个记号，从而构建一个控制序列记号。
对于类别码的处理，TEX输入处理器的行为可想像为在三种内部状态（N，新

行；M，行内；S，忽略空格）中切换的机器。在第 2章中我们会讨论这些状态及
其切换。

1.2.2 输入处理器的两个层面

实际上 TEX 的输入处理器自身又可划分为两个层面。由于终端、编辑器或者
操作系统的限制，用户可能无法输入一些所需的字符。所以 TEX 提供了使用两个
上标字符来获取各个有效字符的编码的机制。这一机制可视为 TEX 输入处理过程
中的一个独立的阶段，在时序上要早于上一节中的三态状态机。
例如，^^+ 这个字串的输入会被处理为 k，这是因为 k 和 + 的 ascii 码之差为

64，由于这个替换过程发生在形成字符记号之前，所以输入 \vs^^+ip 5cm与输入
\vskip 5cm是等价的。还有一些例子比这个例子更有用。
上述过程即为 TEX 输入处理器的第一层面，所做的工作是将字符转换为字符，

并不考虑类别码的问题，后者是在第二层面（三态状态机）产生的，它与字符码组

1.3 展开处理器 21

合成字符记号。

1.3 展开处理器

TEX的展开处理器可以接受记号流并且对其中的记号逐一进行展开，直至记号
流中所有的记号都是不可展开的。最有代表性的例子是宏的展开：如果一个控制序
列记号是一个宏名，那么该记号（可能还包括它的参数记号）会被替换为这个宏的
定义文本。
展开处理器所接受的记号流主要来自输入处理器，展开结果是一串不可展开的

记号流，将会交给执行处理器。
然而，在处理 \edef或 \write等时也会执行展开处理器。在展开时，这些命

令的参数记号列很像在顶层而非在命令参量中的。

1.3.1 记号的展开过程

展开处理器展开一个记号的步骤如下：

1. 查看这个记号是否可展开。

2. 如果记号不可展开，那么就将它放入当前构建的记号列表中，然后读入下一个
记号。

3. 如果记号可展开，那么它可以展开成什么，就将其替换为什么。对于不带参数
的宏以及像 \jobname这样的一些原始命令，只需进行简单的记号序列替换即
可。不过，通常 TEX 需要从记号流中吸收一些参量记号，以形成当前记号的
替换文本。例如，对于一个带参数的宏，那么就需要从记号流中析取足够的记
号，以形成与它的参数对应的参量。

4. 对于当前记号的展开结果中的第一个记号，返回至步骤 1继续进行展开。

判断一个记号是否可展开很简单。宏和活动字符、条件式以及一部分 TEX 原始命
令（见第 132页的列表）都是可展开的，其他记号则都是不可展开的。展开处理器
根据这个判定规则将宏的记号替换为它的定义，对条件式进行计算以忽略无关的记
号。不过，对于像 \vskip这样的记号和字符记号，包括像美元符和花括号这样的
字符，展开处理器会将它们原封不动地传送到执行处理器。

1.3.2 几个特例

如上文所述，在一个记号被展开后，TEX会对其展开结果中的记号继续进行展
开。但是 \expandafter这个控制序列初看破坏了这个游戏规则，因为它只做一步
展开。实际发生的事情是：记号列

\expandafter⟨token1⟩⟨token2⟩

会被替换为

22 第 1 章 TEX 处理器的结构

⟨token1⟩⟨expansion of token2⟩

而这个替换结果还会被展开处理器再次处理。
然而确实存在不遵守展开处理器游戏规则的情况。如果当前处理的记号是

\noexpand控制序列，那么展开处理器把它的下一个记号视为不可展开的：展开处
理器如同 \relax那样处理这个记号，直接将其传送到所构建的记号列表中。
例如下面这个宏的定义：
\edef\a{\noexpand\b}

替换文本 \noexpand\b 会在宏定义时被展开。\noexpand 的展开结果是其后的那
个记号临时改变成 \relax 的含义。因此，在展开处理器处理下个记号 \b 时，就
将它视为不可展开的，而直接将它扔到在建的记号列表中，从而 \b就是这个宏的
替换文本。
还有一种特例：在 \edef语句里，\the⟨token variable⟩的展开结果是不会被

进一步展开的。

1.3.3 展开处理器中的花括号

上一节提到，花括号会被展开处理器作为不可展开的字符记号忽略。通常而言
这个说法是正确的。例如下面这个 \romannumeral控制序列：

\romannumeral1\number\count2 3{4 ...

它会被 TEX 展开至花括号处停止：如果 \count2 的值是 0，那么这个控制序列的
展开结果是 103的罗马数字表示。
另外一个例子，对于
\iftrue {\else }\fi

展开处理器将使用与

\iftrue a\else b\fi

完全类似的方式进行处理，结果是 {字符记号，与它的类别码无关。
但是在宏展开的环境中，展开处理器需要识别和处理花括号。首先，配对的花

括号可以标定一组记号用于形成一个参量，例如下面这个带有 1个参数的宏：
\def\macro#1{ ... }

你可以使用单个记号作为参量调用这个宏，如下：
\macro 1 \macro \$

也可以使用配对花括号包围的一组记号作为这个宏的参量，如下：
\macro {abc} \macro {d{ef}g}

其次，对于带参数的宏，未配对花括号内的表达式不能形成宏参量。例如：
\def\a#1\stop{ ... }

它的参量由第一次出现并且不在配对花括号内的 \stop之前的记号组成：对于
\a bc{d\stop}e\stop

其中 \a的参量是 bc{d\stop}e。这里只接受平衡表达式作为参量。

1.4 执行处理器 23

1.4 执行处理器

执行处理器用于构建水平、竖直和数学列表。与这些列表相应，执行处理器在
水平、竖直和数学模式中运行。这三种模式每种都有 ‘内部的’ 和 ‘外部的’ 两个类
型。执行处理器在构建列表的过程中，还需要进行一些与模式无关的操作，例如
赋值。
执行处理器的输入来自展开处理器的输出，是一个不可展开的记号流。从执行

处理器的角度来看，这条记号流所包含的记号有两种类型：

• 用于赋值的记号（包括宏定义）以及像 \show、\aftergroup这样执行与模式
无关操作的记号。

• 用于构建列表的记号：字符、盒子和粘连。对这些记号的处理方式依赖执行处
理器当前处于的模式。

有些记号可以用于任何模式，例如盒子既可以出现在水平模式、竖直模式，也
可以出现在数学模式中，但是这些对象的作用与效果需要依赖于具体的模式。其他
记号是模式专用的，例如字符记号（确切的说是类别码为 11和 12的字符记号）只
能用于水平模式，这意味着：当执行处理器在竖直模式中遇到字符记号时，便会转
入水平模式中工作。
并非所有的字符记号都是可排印的，例如在 TEX 的默认状态中，执行处理器

会将 $ 作为数学模式的切换符，并将 { 和} 作为编组的起止符。数学模式切换符
用于告知执行处理器进入和退出数学模式，而花括号让执行处理器进入和退出一个
编组。
控制序列 \relax需要在此关注一下，它是横跨展开处理器与执行处理器两界

的特殊公民，在展开处理器中它是不可展开的，在执行处理器中它什么也不执行，
但是它并非一无是处，可以比较下面的两个示例的效果，从中发现 \relax的用途。
示例 1：
\count0=1\relax 2

示例 2：
\def\empty{}
\count0=1\empty 2

这两个示例都是在为计数寄存器赋值，但是示例 1赋的值为 1，而示例 2赋的值为
12。这是因为在示例 1中，\relax在执行处理器获得数值 1的时候阻断了它进一
步获取数值 2，而在示例 2中 \empty的展开结果为空，执行处理器轻而易举地继
1之后就拿到了 2，所以形成 12。

1.5 可视化处理器

TEX的可视化处理器包含了用户不可直接控制的一些算法，用于处理断行、阵
列、分页、数学排版以及 dvi 文件生成等。用户可以通过一些参数间接控制 TEX

24 第 1 章 TEX 处理器的结构

的这部分操作。
可视化处理器中有一部分算法返回的是可被执行处理器处理的结果。例如，已

完成断行的段落是一组带有行间粘连和惩罚的水平盒子，并被添加到主竖直列中。
再者，分页算法会将其处理结果存储在 \box255中，以使输出例程能够产生页面。
另一方面，数学公式不可以被分解，而输送至 dvi文件的盒子也是不可逆的。

1.6 示例

1.6.1 被忽略的空格

被忽略的空格可以反映数据在 TEX各层处理器之间的流动情况。例如：
\def\a{\penalty200}
\a 0

展开的结果并非是（这将放置值为 200的惩罚项，并排印数字 0）
\penalty200 0

而是
\penalty2000

这是由于 \a后的空格会被输入处理器忽略，从而展开处理器所得到的控制序列是
\a0

1.6.2 内部量值及其表示

TEX拥有多种内部量值，诸如整数和尺寸。这些内部量值的外部表示方法只有
一种，那就是字符串表示，例如 4711或者 91.44cm。
内部量值与外部表示之间的转换分别发生在两个不同的层面，具体依赖于转换

的方向。对于字符串转换为内部量值，例如：
\pageno=12 \baselineskip=13pt

或者
\vskip 5.71pt

像这样的语句会在执行处理器中被处理。
另一方面，内部量值到外部表示的转换是由展开处理器完成的。例如：
\number\pageno \romannumeral\year
\the\baselineskip

这些语句会被展开处理器处理为内部量值的字符串记号。
最后一个例子，假设 \count2=45，看下面的语句：
\count0=1\number\count2 3

展开处理器可将 \number\count2 展开为字符串 45，而 2 之后的空格并不会结束
正在赋予的数值：它只用于定界 \count寄存器的数字。从而下一层级的执行处理
器看到的是：

1.6 示例 25

\count0=1453

于是它便奉命行事。

第 2 章 类别码与内部状态

在读取字符时，TEX以类别码赋之。TEX的输入处理器有三种内部状态，而且
输入处理器在这三种内部状态之间的转换以字符的类别码作为表征。本章主要讲述
TEX如何读取字符以及类别码如何影响它的读取行为，附加讨论一下有关空格与行
尾的问题。

\endlinechar 添加到输入行末尾的行结束符的字符码。IniTEX默认为 13。

\par 结束当前段落并进入竖直模式。可以用空行生成。

\ignorespaces 读取并展开直到遇到非 ⟨space token⟩。

\catcode 查询或者设置类别码。

\ifcat 检测两个字符的类别码是否相同。

\␣ 控制空格。插入与 \spacefactor = 1000时的空格记号相同大小的空白。

\obeylines 用于保留行结束符的 Plain TEX宏。

\obeyspaces 用于保留（大多数）空格的 Plain TEX宏。

2.1 概述

TEX的输入处理器从文件或终端中扫描输入的文本行，将字符转化为记号。输
入处理器可视为一种简单的有限状态自动机，具有三种内部状态，不同的状态对应
不同的扫描行为。本章分别从内部状态和类别码这两个角度考察这个自动机。

2.2 初始处理

TEX对输入文件（也可能是来自终端的输入，但实际很少有人使用，下文不再
刻意提它）是逐行处理的，因此首先要讨论 TEX输入处理器是如何识别输入行的。

不同的计算机系统对输入行有不同的定义。 最常见的方式是采用回车符加换
行符作为行终止符，但是有些系统只使用换行符，还有一些系统是固定宽度的输入

26

2.3 类别码 27

行（块存储）而根本不使用终止符。为了对这些系统一视同仁，TEX必须要掌控输
入行的终止方式，大致步骤如下：

1. 从输入文件读取一行（去掉输入行终止符，如果有的话）。

2. 移除行尾空格（这是针对采用块存储的系统的操作，而且也避免了混乱，因为
在编辑器中行尾空格通常是不可见的）。

3. 将 \endlinechar（默认为 ⟨return⟩，其 ascii 码为 13）添加到输入行尾部。
如果 \endlinechar 的值为负值或者大于 255（在 TEX 3 之前则为大于 127；
见第 303页介绍的更多差异），行尾不需要添加字符；其效果与该行以注释符
结尾相同。

不同的计算机系统可能在字符编码方面也存在区别（最常见的编码是 ascii和
ebcdic），因此 TEX 必须要将文件输入的字符编码转换为它的内部编码，藉此 TEX
可以兼容任何系统中的字符编码。更多内容详见第 3章。

2.3 类别码

256 个字符码（0–255）的每一个都关联一个不尽相同的类别码。共有 16 个
类别，编号从 0到 15。在扫描输入行的过程中，TEX会生成 (字符码,类别码)对。
TEX的输入处理器的眼里只有 (字符码,类别码)对，从中生成字符记号、控制序列
记号和参数记号。这些记号随后被传送到 TEX的展开处理器与执行处理器。
字符记号是 (字符码, 类别码) 对，它在展开处理器与执行处理器中不会被改

变。控制序列记号是由一个或多个前缀为转义符的字符构成，详见下文。参数记号
的解释也详见下文。
下面是 16个类别列表的大致解释，更多的细节知识散布于后文以及后续各章

之中。

0. 转义符：用于表示控制序列的开始。IniTEX 使用反斜线 \（ASCII 码为 92）
作为转义符。

1. 组开始符：此类字符可让 TEX 进入新一层的编组。在 Plain TEX 中，组开始
符默认是 {。

2. 组结束符：此类字符可让 TEX 结束当前层的编组。在 Plain TEX 中，组结束
符默认是 }。

3. 数学切换符：置于数学公式两侧，向 TEX 表示这是数学公式。在 Plain TEX
中，数学切换符默认为 $。

4. 制表符：在 \halign（\valign）制作的表格中作为列（行）的分割符。在
Plain TEX中，制表符默认为 &。

5. 行结束符：用于表示此处为输入行的结束之处。IniTEX 默认将 ⟨return⟩字符
（ASCII码为 13）视为行结束符，所以 IniTEX将 13作为 \endlinechar的值

28 第 2 章 类别码与内部状态

并非巧合；见下面所述。

6. 参数符：用于表示宏的参数。Plain TEX默认使用 #作为参数符。

7. 上标符：在数学模式中用于表示上标，也可用于表示那些无法直接在文本中输
入的字符；见下面所述。Plain TEX默认使用 ^作为上标符。

8. 下标符：在数学模式中用于表示下标。Plain TEX使用下划线 _作为下标符。

9. 可忽略符：TEX 将会从输入中去掉此类字符，因此它不会影响 TEX 的后续处
理。Plain TEX使用 ⟨null⟩字符（ASCII码为 0）作为可忽略符。

10. 空格符：这个符号会受到 TEX的特殊礼遇，它默认被 IniTEX赋予 ⟨space⟩字
符（ASCII码为 32）。

11. 字母符：对于该类字符，IniTEX 只定义了 a..z和 A..Z这些。通常在写宏包
的时候，为了避免宏名冲突，宏包作者通常会将某些非字母符（例如 @）打扮
为字母符而使用。

12. 其他字符：IniTEX将不属于其他 15类的字符归到该类，最常见的是数字、标
点符号等。

13. 活动符：活动符在功能上相当于 TEX 控制序列，但是它不需要转义符作为前
缀。在Plain TEX中只有 ~是活动符，用于产生不可断行的空格；见第 201页。

14. 注释符：TEX 将忽略从注释符开始的该行所有字符。IniTEX 使用分号 % 作为
注释符。

15. 无效符：这个字符类是为那些不应该在 TEX 输入中出现的字符而设置的。
IniTEX将 ⟨delete⟩字符（ASCII码为 127）归入此类。

用户可以修改任意字符的类别码，途径是使用 \catcode 命令（见第 36 章对
诸如 ⟨equals⟩的概念的解释）：

\catcode⟨number⟩⟨equals⟩⟨number⟩.

此语句的第一个参数是需要修改类别码的字符的编码，它通常可用下面形式给出：

`⟨character⟩ 或 `\⟨character⟩

这两种写法都表示该字符的字符码（见第 41和 83页）。
Plain TEX格式将 \active定义为：
\chardef\active=13

因此你可以像下面这样写
\catcode`\{=\active

上面的 \chardef命令将在第 43和 84页中介绍。
LATEX格式有下面这样的控制序列：
\def\makeatletter{\catcode`@=11 }
\def\makeatother{\catcode`@=12 }

它可用于开启或关闭“隐秘”字符 @（见下述）。
\catcode命令也可用于查询类别码，例如：

2.4 从字符到记号 29

\count255=\catcode`\{

所得类别码存储于第 255号计数寄存器。
类别码可使用以下命令进行测试：

\ifcat⟨token1⟩⟨token2⟩

无论 \ifcat之后跟随的是一些什么东西，TEX 都会将其展开，直至发现两个不可
展开的记号为止，然后去比较这两个记号的类别码是否相等。控制序列的类别码被
视为 16，这样它们的类别码都是相等的，而控制序列与字符记号的类别码总不相
等。条件语句在第 13章中将会仔细介绍.

2.4 从字符到记号

TEX的输入处理器对来自文件或用户终端的输入行进行扫描，将其中的字符转
化为记号。记号的类型分为以下三种：

• 字符记号：任何本身会被传递到 TEX后续处理器并具有相应的类别码的字符。

• 控制序列记号：这种记号分为两种类型，第一种类型是控制词，由转义符（即
类别码为 0的字符）后跟一串 ‘字母’而成；第二种类型是控制符，由转义符后
跟任何非字母（即类别码不是 11）的单个字符组成。在没必要区分控制词与
控制符时，可以将它们统称为控制序列。

由转义符与一个空格字符 \ 构成的控制序列，称为控制空格。

• 参数记号：由参数字符（类别码为 6，Plain TEX 中默认为 #）尾随一位在
1..9中的数字构成。参数记号只能在宏的环境中出现（见第 11章）。
在宏的替换文本中，如果一个宏参数字符之后又跟随了一个宏参数字符（字
符码可以不相同），那么它们会被替换为单个字符记号，其类别码为 6（宏参
数），字符码等于第 2个参数字符的编码。常见情形是输入行内的 ##会被替换
为 #6，这里的下标表示类别码。

2.5 输入处理器视为有限状态自动机

TEX的输入处理器可视为三态的有限状态自动机，也就是说在任意的瞬间，它
都处于这三种内部状态的某一种状态之中，并且在转移到另一种状态之后，对于前
一状态没有任何记忆。

2.5.1 状态 N：新行

在每个输入行的开始处，TEX输入处理器便会进入状态 N，这是它唯一可进入
这一状态的时刻。在这一状态中，所有的空格记号（也就是类别码为 10 的字符）

30 第 2 章 类别码与内部状态

会被忽略；行结束符会被转化为 \par记号。如果遇到其他记号，那么输入处理器
所处状态便会切换为状态M。

2.5.2 状态 S：忽略空格

在任何状态的控制词或控制空格（其他控制符不在这一范畴）之后，或者在状
态 M 的空格字符之后，输入处理器便会进入状态 S。在这一状态中，所有的后续
空格或行结束符会被丢弃。

2.5.3 状态M：行内

显然状态 M 是最寻常的状态。当 TEX 的输入处理器遇到类别码为 1–4，6–8
以及 11–13的字符或者控制符（不包括控制空格），在其之后便进入状态M。在状
态M中，如果输入处理器遇到了行结束符，它会将其转化为一个空格记号。

start−−−−−−→

↙ 10 ↖

N

?
14

?

?
5: insert \par

?
stop

other−−−−−−→

↙ other ↖

M

?
14

?

?
5: insert space

?
stop

10−−−−−−−−−−−−−−→
0+11,11, …−−−−−−−−−−−−−−→
0+10−−−−−−−−−−−−−−→

↖ other ↙

↙ 10 ↖

S

?
14

?

?
5

?
stop

2.6 所有字符皆可信手拈来

严格地讲，TEX 输入处理器并非有限状态自动机。这是因为在扫描输入行期
间，两个相同上标字符（类别码为 7 ）尾随一个编码小于 128 的字符（姑且称之
为原字符）组成的三元组会被替换为字符码在 0–127 之间的字符，新字符的编码
与原字符的编码相差 64。
这种字符访问机制主要用于访问那些难以输入的字符，例如像 ascii 码中的

⟨return⟩ 和 ⟨delete⟩ 字符。可分别使用 ^^M 和 ^^? 进行访问。不过，由于 ^^? 的
类别码是 15，属于无效符，因此要访问编码为 127的字符，必须先修改 ^^?的类
别码。

TEX3修改和扩展了这个机制以访问 256个字符：任何四元组 ^^xy，其中 x和
y为小写十六进制数字 0–9, a–f，被替换为一个在 0–255之间的字符，即十六进制
表示为 xy的字符。这也稍微限制了前面机制的使用：设若键入了 ^^a以生成字符
!，接着再键入 0–9或 a–f将被错误理解。

2.7 内部状态切换 31

这种字符访问机制使得 TEX 的输入处理器比真正的有限状态自动机更强大，
并且不会妨碍 TEX 输入处理器的其余扫描过程。因而，为了更容易理解此概念，
可以假装认为这种对 ^^引导的三元组或四元组的字符替换是提前进行的。实际上
这是不可能的，因为输入行内有可能会将非上标符的类别码也设为 7，这样便会影
响后续的处理了。

2.7 内部状态切换

现在我们来关注一下不同类别码的字符对 TEX的输入处理器内部状态的影响。

2.7.1 0：转义符

在遇到转义符时，TEX便开始形成一个控制序列记号。控制序列记号有三种类
型，依赖于转义符后面的字符的类别码。

• 如果转义符之后的字符的类别码为 11，即字母，那么 TEX 便会将转义符、类
别码为 11 的字符以及后续所有类别码为 11 的字符捆绑为一个控制词，然后
进入状态 S，即忽略空格状态。

• 如果转义符之后的字符的类别码为 10，即空格，那么 TEX 便会产生一个控制
空格，然后进入状态 S。

• 如果转义符之后的字符为其他类别码，那么 TEX 便形成一个控制符，然后
TEX进入状态M，即行内状态。

控制序列的名称所包含的字符必须居于同一行。即使当前行以注释符结束，或
者当前行没有行结束符（通过将 \endlinechar设定到 0–255之外实现），控制序
列字符也不能跨过两行。

2.7.2 1–4, 7–8, 11–13：非空字符

类别码属于 1-4、7-8、11-13的字符会被转化为记号，然后 TEX进入状态M。

2.7.3 5：行结束符

遇到行结束符时，TEX 会忽略当前行的剩余部分，然后进入状态 N 开始处理
下一行。如果当前状态是 N，即当前行只有空格，TEX 就插入 \par记号；如果当
前状态是M，那么就插入一个空格记号；如果当前状态是 S，就不插入任何记号。
注意“行结束符”是类别码为 5的字符，它可以不是 \endlinechar，也不必

出现在行尾。要明白它，请继续阅读下文。

32 第 2 章 类别码与内部状态

2.7.4 6：参数符

在宏定义中，参数符参数符通常为 #，其后可跟随数字 1..9 或者另一个参数
符，前者产生的是“参数记号”，后者产生的是单个字符记号。这两种情况都会导
致 TEX都会进入状态M。
参数符在 Plain TEX中也被用于构建阵列的模板行（见第 25章）。

2.7.5 7：上标符

上标符会像非空字符那样被处理，除非其后尾随一个相同字符码的上标符。两
个上标符及其尾随字符构成的三元或四元组的字符替换功能在前文已有阐述。

2.7.6 9：可忽略符

类别码为 9的字符会被忽略，并且 TEX会保持其状态不变。

2.7.7 10：空格符

类别码为 10 的记号称为 ⟨space token⟩（空格记号），不管其字符码是什么。
在状态 N和 S中，TEX会忽略空格记号（而且其状态不变）；在状态M中 TEX会
将它替换为类别码为 10字符码为 32的字符（ascii空格符），并进入状态 S。这意
味着空格记号的字符码可能与从输入字符的编码不同。

2.7.8 14：注释符

注释符可使 TEX忽略输入行的后续文本，其中包含注释符本身。特别地，注释
符将导致 TEX 看不到输入行的行结束符，所以即使在状态 M中遇到注释符，TEX
也不会插入空格记号。

2.7.9 15：无效符

无效符会导致 TEX 报错。TEX 的状态会停留在无效字符之前的状态。不过，
在控制符中的无效符是可以接受的，譬如 \^^?就不会导致 TEX报错。

2.8 字母符与其他字符

大部分编程语言的标识符可由字母与数字构成（也可能包含其他字符，例如下
划线），但是 TEX 的控制词只能由类别码为 11 的字符形成。默认情况下，数字与
标点符号的类别码为 12（其他字符）。不过 TEX 可以产生各字符的类别码均为 12
的字符串，尽管这些字符的原始类别码并非 12。

2.9 \par 记号 33

类别码为 12 的字符串可用 \string、\number、\romannumeral、\jobname、
\fontname、\meaning以及 \the等命令生成。这些命令所产生的字符串中如果包
含空格符，其类别码为 10。
在极个别情况下十六进制数字会隐藏在控制序列中，因而除了通常的 A11–F11

之外，TEX还允许 A12–F12 作为十六进制数字（这里的下标表示类别码）。
看下面的示例：

\string\end 可以得到字符记号 \12e12n12d12
注意转义符 \12 出现在输出中是因为 \escapechar 的值等于反斜线的字符码。将
\escapechar改为另一个值将使得 \string输出另一个字符. 这个 \string命令将
在第 3章中进一步介绍。
空格是可以封到控制序列中的，例如

\csname a b\endcsname

给出的是一个控制序列记号，其中三个字符有一个是空格符。将这个控制序列转化
为字符串

\expandafter\string\csname a b\endcsname

可得 \12a12 10b12.
举个更实用一些的例子，假设有一系列输入文件 file1.tex、file2.tex等。

我们想写一个宏统计输入文件的序号，一种方法是：
\newcount\filenumber \def\getfilenumber file#1.{\filenumber=#1 }
\expandafter\getfilenumber\jobname.

宏参数中的字符 file（见第 11.5节）会吸走 \jobname中的 file部分，从而留下
文件编号作为唯一的参数。
但是上述代码有误，宏参数中的 file字符串的类别码为 11，而 \jobname中

的 file字符串的类别码为 12，所以需要对上述代码进行以下修正：
{\escapechar=-1
\expandafter\gdef\expandafter\getfilenumber

\string\file#1.{\filenumber=#1 }
}

注意 \string\file 得到 f12i12l12e12 这 4 个字符，而 \expandafter 命令让
\string\file 在宏定义之前先行展开，并且 \escapechar=-1 让 TEX 忽略反斜
线。由于 \escapechar设定被限制在编组内部，我们需要使用 \gdef进行宏定义。

2.9 \par 记号

TEX 在遇到空白行之后，即在状态 N 时遇到类别码为 5 的字符（行结束符）
之后，就会向输入中插入一个 \par记号。最好是明白这是如何发生的：因为 TEX
在遇到空格符之外的任何字符都会离开状态 N，所以能够形成 \par 的输入行所
包含字符的类别码肯定皆为 10；特别地，该行不能包含注释符。此事实常常以另

34 第 2 章 类别码与内部状态

一种方式被用到：如果输入格式中需要保留空白行，我们可以给该行加上一个注
释符。
连续两个空行产生两个 \par 记号，实际上它们等同于一个 \par 记号，这是

因为在第一个 \par 之后，TEX 进入竖直模式，而在竖直模式中的 \par 只会触发
TEX的页面构建器以及清除段落形状参数。
在非受限水平模式中遇到 ⟨vertical command⟩（竖直命令）时，TEX 也会向

输入中插入一个 \par 记号，并对其读取和展开，然后再重新处理竖直命令（见
第 6和 17章）。

\end命令也会插入 \par记号，然后结束 TEX的运行；见第 28章。
要知道 TEX在遇到空白行时通常所作的事情（结束当前段落）取决于 \par记

号的默认定义。如果重定义 \par，那么空白行和竖直命令的行为可能就完全不同
了，甚至可以藉此实现一些不同寻常的效果。为了能够得到与 \par 相同的行为，
Plain TEX提供了 \par的“同义词”\endgraf。详见第 17章。

\par记号不可以出现在宏参量中，除非是使用 \long定义的宏。对于非 \long
定义的宏，如果 \par 出现在参量中，TEX 会给出“runaway argument”的错误
信息。不过，使用 \let定义的指向 \par记号的控制序列（例如 \endgraf）则可
以出现。

2.10 空格

这一节讨论空格字符的一些表现，以及 TEX 初始化进程中的空格记号。至于
文本排版的空格，将在第 20章中讨论。

2.10.1 被忽略的空格

从对 TEX 输入处理器的内部状态的讨论中，容易知道有些空格是不可能被输
出的；实际上它们甚至都无法通过输入处理器。例如输入行开头的空格，还有放在
让 TEX进入状态 S的字符之后的空格。
另一方面，行结束符可以产生空格，并且可被输出。还有第三种空格：它可以

通过输入处理器，甚至可在输入处理器中生成，但是依然没有机会被输出，它们便
是 ⟨optional spaces⟩（可选空格），TEX语法的多个地方都允许出现这种空格。

2.10.2 可选空格

TEX的语法中有“可选空格”与“单个可选空格”的概念：

⟨one optional space⟩ −→ ⟨space token⟩ | ⟨empty⟩
⟨optional spaces⟩ −→ ⟨empty⟩ | ⟨space token⟩⟨optional spaces⟩

通常，⟨one optional space⟩ 允许出现在数值以及粘连描述之后，而 ⟨optional
spaces⟩ 允许出现在数值内部（比如在负号和数字之间）或者粘连描述内部（比

2.10 空格 35

如在 plus和 1fil之间）可以有空格的地方。另外，在 ⟨equals⟩的定义中也允许
⟨optional spaces⟩出现在 =号前后。
下面是可选空格的一些例子：

• 数值可被 ⟨one optional space⟩分割。这样防止了偶然的失误（见第 7章）并
加速了处理过程，因为 TEX 检测 ⟨number⟩ 在何处终止更容易。不过，要注
意并非每个“数值”都是 ⟨number⟩：例如 \magstep2中的 2并非数字，而是
单个记号并且是 \magstep宏的参量，因此在其之后的空格或行结束符是有效
的。另一个例子是宏参数中的数字，例如 #1：因为一个宏最多允许有 9 个参
数，只需在参数字符之后扫描一位数字即可。

• 根据 TEX 的语法，关键字 fill 和 filll 是由 fil 关键字以及一两个单独的
l关键字构成的（见第 301页的更详细讨论），因此其中允许可选空格的存在；
比如 fil L l也是有效的关键字。不过这也许会导致 TEX 误解你的本意，对
于大多数情形，在这种关键字后添加一个 \relax可以防止这种灾难。

• 在宏定义末尾使用原始命令 \ignorespaces 可能会比较方便。由于它可以吞
噬可选空格，使用它可避免把参量的右花括号后的空格无意中带入输出中。例
如下面这个例子：

\def\item#1{\par\leavevmode
\llap{#1\enspace}\ignorespaces}

\item{a/}one line \item{b/} another line \item{c/}
yet another

其中 \ignorespaces 吞掉了第二、三项的那些不希望被输出的空格。不过
\ignorespaces之后的空行仍然会插入 \par记号。

2.10.3 被忽略的和被保留的空格

控制词之后的空格会被忽略。不过这个不是可选空格的例子，只是因为 TEX
在控制词之后会进入状态 S而已。同样，控制词之后的行结束符也会被忽略。
数值只能被 ⟨one optional space⟩定界，但是

a\count0=3 b 仍然给出 ‘ab’,

这是因为 TEX 在第一个空格记号之后会进入状态 S，因此第二个空格永远也不可
能变成空格记号。

当 TEX 在状态 N 中时，空格会被忽略。当 TEX 在竖直模式中时，空格记号
（就是那些起初未被忽略的空格）会被忽略。例如下面第一个盒子之后（由行结束
符生成的）的空格会被忽略：

\par
\hbox{a}
\hbox{b}

Plain TEX 和 LATEX 都定义了一个 \obeyspaces 宏，这使得空格都是有效的，

36 第 2 章 类别码与内部状态

比如控制词后的空格以及空格后的空格都不会被忽略。这个宏的基本实现方式为 1

\def\space{ }
\catcode`\ =13 \def {\space}

在实现多行抄录环境时，还需要另一个 \obeylines 宏：它将每个行结束符
定义为 \par 命令，使得下面各行都在竖直模式中开始。此时活动空格展开的空
格记号在竖直模式中将会被忽略，即空白行将会被删除。为此我们可以修改上述
\space宏的定义如下：

\def\space{\leavevmode{} }

这样，活动空格将会让 TEX立即切换到水平模式，从而保留了每个空格。

2.10.4 空格被忽略的其他情形

还有三种情况会导致 TEX忽略空格记号：

1. 在寻找非定界的宏参量时，TEX会接受第一个非空格的记号（或编组）作为参
量。这将在第 11章中介绍。

2. 在数学模式中，空格记号会被忽略（见第 23章）。

3. 在阵列制表符之后，空格记号会被忽略（见第 25章）。

2.10.5 ⟨space token⟩

空格在 TEX中有些反常。例如，\string操作会对所有的字符赋以类别码 12，
唯独对空格例外，它还是坚持自己的类别码为 10 。还有在前文中提到过的，TEX
的输入处理器（在状态M中）会将所有类别码为 10的记号转化为真正的空格：它
们的字符编码为 32。任何类别码为 10 的空格称为 ⟨space token⟩。那些字符编码
不是 32的空格记号被称为滑稽空格。

例子：将空格字符的类别码赋予字符 Q，并在宏定义中使用它：

\catcode`Q=10 \def\q{aQb}

那么，我们可得到

\show\q
macro:-> a b

这是因为输入处理器改变了宏定义中滑稽空格的字符编码。

字符码不为 32的空格记号可以用 \uppercase等命令生成。然而，‘由于各种
不同的空格记号的表现几乎是一致的，纠缠于细节毫无意义’；见 [25]第 377页。

1译注：原文最后两个段落的描述有些错乱，已经稍作修订。

2.11 行结束符的更多知识 37

2.10.6 控制空格

‘控制空格’ 命令 \␣ 给出的空白的大小与 \spacefactor 等于 1000 时 ⟨space
token⟩ 给出的一样。控制空格不能当成空格记号来用，也不能像宏一样展开成为
空格记号（像 Plain TEX 定义的 \space 那样）。例如，TEX 会忽略输入行开头的
空格，但是控制空格是一个 ⟨horizontal command⟩，因此它使得 TEX 从竖直模式
切换到水平模式（并插入缩进盒子）。见第 20章介绍的空白因子，以及第 6章介绍
的水平和竖直模式。

2.10.7 可见空格

显式的空格符号 ‘␣’是计算机现代打字机字体中字符编码为 32的字符，但仅使
用 \tt是无法将其显现出来的，因为空格在输入处理器中受到了特别处理。
使空格字符 ␣现形的一种方法是设置
\catcode`\ =12

这样 TEX便会将空格字符作为编码为 32的字符排印出来，而且后续的空格也不再
被忽略，同样会被排印出来：状态 S只是在类别码为 10的字符之后才会出现。类
似地，控制序列之后的空格也因为类别码改变而被显现出来。

2.11 行结束符的更多知识

TEX 从输入文件中获得文本行，并从中消除行终止符。正是这一行为，使得
TEX 不依赖于各个操作系统特定的行终止符（CR-LF，LF，或者在块存储系统中根
本不存在）。文本行末尾的空白字符也会被移除。这样处理是由于历史原因：它与
IBM大型计算机的块存储模式有关。在 [2]中介绍了行尾符造成的一些计算机问题。
完成上述处理后，TEX 会将 \endlinechar 所表示的字符置于行尾，除非

\endlinechar 的字符码为负数或者大于 255。注意这个行结束符也可以不是类别
码为 5的字符。

2.11.1 保持各行

有时候会期望会希望输入文本中的行结束符能够在排版输出后保持。下面的代
码可以可以解决这一问题：

\catcode`\^^M=13 %
\def^^M{\par}%

这里，\endlinechar成为活动符，其含义变为 \par。上述代码中的注释符用于阻
止 TEX看到代码末尾的行终止符，以防它将其作为活动字符而展开。
然而，将上述代码嵌入宏定义时要小心，比如
\def\obeylines{\catcode`\^^M=13 \def^^M{\par}}

38 第 2 章 类别码与内部状态

是会被 TEX 误解的：TEX 将丢弃第二个 ^^M之后的所有字符，因为此时 ^^M类别
码为 5，而非 13。也就是说，这一行实际上变成

\def\obeylines{\catcode`\^^M=13 \def

要修正上述问题，需要为 ^^M营造一个可作为活动字符使用的环境：
{\catcode`\^^M=13 %
\gdef\obeylines{\catcode`\^^M=13 \def^^M{\par}}%
}

不过这个定义还是有缺陷，因为输入文本中的空行会被忽略。这是因为连续两个
\par记号会被当成一个。对上述定义稍作改进即可解决这个问题，如下：

\def^^M{\par\leavevmode}

这样，输入文本中的每一行都会开启一个新段落，空行则开启一个空段落。

2.11.2 改变 \endlinechar

有时，你可能想改变 \endlinechar 或者 ^^M 的类别码以获得一些特殊效果，
例如让宏的参量用行结束符定界。参考第 128页给出的例子。
这里有几个陷阱。首先考虑下面的写法：
{\catcode`\^^M=12 \endlinechar=`\^^J \catcode`\^^J=5
...
... }

这将导致无意中输出了第 13 号（^^M）与第 10 号（^^J）字符，由于第一行和最
后一行的行终止符。
在第一行和最后一行末尾加上注释符可以解决此问题，但还有另一种方法是将

第一行拆成下面两行
{\endlinechar=`\^^J \catcode`\^^J=5
\catcode`\^^M=12

当然，在多数情况下没必要将行结束符替换为另一个字符；设置
\endlinechar=-1

就等同于各行都以注释符结尾。

2.11.3 行结束符的更多注记

TEX和其他字符一样对待添加到行尾的字符。通常我们不会注意到它，因为它
的类别码比较特殊，但是有一些方法可以特殊地处理它。

例子：把 ^^置于文本行的末尾（假定 \endlinechar保持默认值为 13），
将输出字符 ‘M’，它是编码为 13+64的 ascii字符。

例子：如果已经定义了 \^^M，在输入行中用反斜线结尾将执行此命令。
在 Plain格式中定义

\def\^^M{\ }

2.12 输入处理器的更多知识 39

这使得 ‘控制换行’与控制空格等价。

2.12 输入处理器的更多知识

2.12.1 输入处理器作为独立进程

TEX处理器的各个层面都是同时运行的，但是在概念上它们常被视为依次独立
运行，前者的输出是后者的输入。空格的花招可以展示出这一规律。

例如定义一个宏：
\def\DoAssign{\count42=800}

然后调用它：
\DoAssign 0

输入处理器作为 TEX 构建记号列表的层面会忽略 0 之前的所有空格，因此上述宏
的展开的结果是：

\count42=8000

不要认为 \DoAssign被读取然后展开，接着寄存器被赋值为 800，因此 \DoAssign
之后的那个 0会被排印出来。注意即使最后的 0出现在下一行结果也一样。

再来看下面这个让可选空格字符在多个处理层面中出现的例子：

\def\c.{\relax}
a\c. b

它的展开结果为

a\relax b

输出结果为

‘a b’

这是因为 \relax 之后的空格仅仅在文本行被读取时可能会被忽略，在 .Ä展开为
\relax之后不会被忽略。另一方面，下面例子：

\def\c.{\ignorespaces}
a\c. b

会被展开为

a\ignorespaces b

在执行处理器中 \ignorespaces会移除它后面的空格，所以输出结果会是

‘ab’.

在上述两个例子中，\c 之后的西文句号是一个定界记号，用于保护控制序列之后
的空格不被输入处理器吃掉。

40 第 2 章 类别码与内部状态

2.12.2 输入处理器不作为单独进程

将 TEX 对输入文本的记号化过程视为一个独立进程是比较普遍的看法，但是
有时会出现反常的现象。例如

\catcode`\^^M=13{}

使得行结束符变成活动符，随后 TEX便会报错“未定义的控制序列”，即对文本行
中的命令的执行影响到 TEX输入处理器对该行文本的扫描过程。
与此相反，
\catcode`\^^M=13

却不会出错。这是因为 TEX输入处理器是在扫描数值 13时读到行结束符，也就是
说在那时赋值还未完成，因此行结束符会被视为数值的定界符，即可选空格。

2.12.3 输入处理器的递归调用

前文中谈到，参数符加数字会被替换为一个参数记号，这种替换行为类似于将
一些字符捆绑为控制序列记号的行为。实际上情况比这复杂得多。从文件输入和从
记号列（比如宏定义）输入都会调用 TEX 的记号扫描机制，但内部状态的变化只
适用于前者。
但是，宏参数符在两种情况下会被以相同方式处理，否则 TEX 便无法处理下

面这样的宏定义
\def\a{\def\b{\def\c####1{####1}}}

见第 121页对这种嵌套定义的解释。

2.13 @ 约定

如果读过 Plain或 LATEX 格式的源代码，就会注意到许多控制序列都包含 ‘at’
符号 @，这意味着这些控制序列不可被普通用户直接使用。
在靠近格式文件的起始处有
\catcode`@=11

它将 @变为字母字符，从而可以用于组成控制序列。而在靠近格式文件的结尾处有
\catcode`@=12

它将 @恢复为其他字符。
为何我们可以调用那些由带有 @字符的控制序列所构成的宏，而不能直接调用

带有 @字符的控制序列呢？原因是带有 @字符的控制序列在定义时已经被转换为记
号，不再是字符串，而宏展开时直接将这些控制序列替换为那些记号即可，这个过
程与控制序列字符的类别码无关。

第 3 章 字符

TEX在其内部使用字符编码来表示字符。这一章讨论字符编码及相关命令。

\char 显式表示所要排印的字符。

\chardef 定义一个控制序列用以表示一个字符编码。

\accent 放置重音符号的命令。

\if 测试字符编码是否相等。

\ifx 测试字符编码与类别码是否都相等。

\let 定义一个控制序列，使之成为一个记号的别名。

\uccode 对于给定的字符编码，查询或设置其对应的大写字符编码。

\lccode 对于给定的字符编码，查询或设置其对应的小写字符编码。

\uppercase 将 ⟨general text⟩转换为大写形式。

\lowercase 将 ⟨general text⟩转换为小写形式。

\string 将一个记号转换为一个字符串。

\escapechar 在将控制序列转换为字符记号列时，用于转义符的字符编码。
IniTEX默认为 92（\）。

3.1 字符编码

表面上看，TEX 内部处理的是字符，但实际上 TEX 处理的是整型数：字符编
码。

在计算机中，字符编码在各个系统中可能有差别。因而 TEX 不得不使用它自
己的字符编码方式。从文件中读取的任何字符都会根据 TEX 的字符码表转换为字
符编码，并赋以相应的类别码（见第 2 章）。TEX 的字符码表是基于 7 位的 ascii
码表构建的，只有 128个字符编码（见第 38.1节）。
利用左引号（或称为反引号）字符 `，可以将字符记号显式地转换为对应的

字符编码：在 TEX 要求 ⟨number⟩ 的所有地方，你都可以用左引号加一个字符记

41

42 第 3 章 字符

号或一个单字符控制序列。因此 \count`a 和 \count`\a 都表示 \count97。另见
第 7章。
虽然上述两种写法是等价的，但有时必须使用后者的形式，例如：

\catcode`\%=11 或 \def\CommentSign{\char`\%}

此时如果去掉 \，就会让 TEX误解。比如
\catcode`%=11

中的 =11将被当成注释。单字符控制序列可以由任意类别码的字符构成。
在转换为字符编码后，字符与其外部表示的联系都已经消失了。当然，对于大

多数字符，见到的输出将 ‘等同’于输入（即 ‘a’将输出 ‘a’）。然而即使对于常见符号
也还是有例外。在计算机现代罗马字体中，没有 ‘小于号’ 和 ‘大于号’，而输入 ‘<>’
得到的输出是 ‘¡¿’。
为了使 TEX 输出不依赖于系统环境，在 dvi 文件中也是使用字符编码：操作

码 n = 0 . . . 127用于表示指令“从当前字体中取第 n个字符”。在 [23]中可以找到
dvi文件的操作码的完整定义。

3.2 用于字符的控制序列

用控制序列表示字符的方式有多种。\char命令可以使用字符编码形式指定要
排印的字符；\let命令可以使用一个控制序列作为字符记号的别名。

3.2.1 表示要排印的字符：\char

Characters can be denoted numerically by, for example, \char98. This com-
mand tells TEX to add character number 98 of the current font to the horizontal
list currently under construction.

Instead of decimal notation, it is often more convenient to use octal or hex-
adecimal notation. For octal the single quote is used: \char'142; hexadecimal
uses the double quote: \char"62. Note that \char''62 is incorrect; the process
that replaces two quotes by a double quote works at a later stage of processing
(the visual processor) than number scanning (the execution processor).

Because of the explicit conversion to character codes by the back quote char-
acter it is also possible to get a ‘b’ – provided that you are using a font organized
a bit like the ascii table – with \char`b or \char`\b.

The \char command looks superficially a bit like the ^^ substitution mech-
anism (Chapter 2). Both mechanisms access characters without directly denot-
ing them. However, the ^^ mechanism operates in a very early stage of pro-
cessing (in the input processor of TEX, but before category code assignment);

3.2 用于字符的控制序列 43

the \char command, on the other hand, comes in the final stages of processing.
In effect it says ‘typeset character number so-and-so’.

There is a construction to let a control sequence stand for some character
code: the \chardef command. The syntax of this is

\chardef⟨control sequence⟩⟨equals⟩⟨number⟩,
where the number can be an explicit representation or a counter value, but it
can also be a character code obtained using the left quote command (see above;
the full definition of ⟨number⟩ is given in Chapter 7). In the plain format the
latter possibility is used in definitions such as

\chardef\%=`\%

which could have been given equivalently as
\chardef\%=37

After this command, the control symbol \% used on its own is a synonym for
\char37, that is, the command to typeset character 37 (usually the per cent
character).

A control sequence that has been defined with a \chardef command can
also be used as a ⟨number⟩. This fact is used in allocation commands such as
\newbox (see Chapters 7 and 31). Tokens defined with \mathchardef can also
be used this way.

3.2.2 隐式字符记号：\let

Another construction defining a control sequence to stand for (among other
things) a character is \let:

\let⟨control sequence⟩⟨equals⟩⟨token⟩
with a character token on the right hand side of the (optional) equals sign. The
result is called an implicit character token. (See page 123 for a further discus-
sion of \let.)

In the plain format there are for instance synonyms for the open and close
brace:

\let\bgroup={ \let\egroup=}

The resulting control sequences are called ‘implicit braces’ (see Chapter 10).
Assigning characters by \let is different from defining control sequences

by \chardef, in the sense that \let makes the control sequence stand for the
combination of a character code and category code.

As an example
\catcode`|=2 % make the bar an end of group
\let\b=| % make \b a bar character
{\def\m{...}\b \m

44 第 3 章 字符

gives an ‘undefined control sequence \m’ because the \b closed the group inside
which \m was defined. On the other hand,

\let\b=| % make \b a bar character
\catcode`|=2 % make the bar character end of group
{\def\m{...}\b \m

leaves one group open, and it prints a vertical bar (or whatever is in position
124 of the current font). The first of these examples implies that even when
the braces have been redefined (for instance into active characters for macros
that format C code) the beginning-of-group and end-of-group functionality is
available through the control sequences \bgroup and \egroup.

Here is another example to show that implicit character tokens are hard
to distinguish from real character tokens. After the above sequence

\catcode`|=2 \let\b=|

the tests
\if\b|

and
\ifcat\b}

are both true.
Yet another example can be found in the plain format: the commands
\let\sp=^ \let\sb=_

allow people without an underscore or circumflex on their keyboard to make
sub- and superscripts in mathematics. For instance:

x\sp2\sb{ij} gives x2
ij

If a person typing in the format itself does not have these keys, some further
tricks are needed:

{\lccode`,=94 \lccode`.=95 \catcode`,=7 \catcode`.=8
\lowercase{\global\let\sp=, \global\let\sb=.}}

will do the job; see below for an explanation of lowercase codes. The ^^ method
as it was in TEX version 2 (see page 30) cannot be used here, as it would require
typing two characters that can ordinarily not be input. With the extension in
TEX version 3 it would also be possible to write

{\catcode`\,=7
\global\let\sp=,,5e \global\let\sb=,,5f}

denoting the codes 94 and 95 hexadecimally.
Finding out just what a control sequence has been defined to be with \let

can be done using \meaning: the sequence
\let\x=3 \meaning\x

gives ‘the character 3’.

3.3 Accents 45

3.3 Accents

Accents can be placed by the ⟨horizontal command⟩ \accent:

\accent⟨8-bit number⟩⟨optional assignments⟩⟨character⟩

where ⟨character⟩ is a character of category 11 or 12, a \char⟨8-bit number⟩
command, or a \chardef token. If none of these four types of ⟨character⟩ fol-
lows, the accent is taken to be a \char command itself; this gives an accent
‘suspended in mid-air’. Otherwise the accent is placed on top of the following
character. Font changes between the accent and the character can be effected
by the ⟨optional assignments⟩.

An unpleasant implication of the fact that an \accent command has to
be followed by a ⟨character⟩ is that it is not possible to place an accent on a
ligature, or two accents on top of each other. In some languages, such as Hindi
or Vietnamese, such double accents do occur. Positioning accents on top of each
other is possible, however, in math mode.

The width of a character with an accent is the same as that of the unac-
cented character. TEX assumes that the accent as it appears in the font file is
properly positioned for a character that is as high as the x-height of the font;
for characters with other heights it correspondingly lowers or raises the accent.

No genuine under-accents exist in TEX. They are implemented as low
placed over-accents. A way of handling them more correctly would be to write
a macro that measures the following character, and raises or drops the accent
accordingly. The cedilla macro, \c, in plain TEX does something along these
lines. However, it does not drop the accent for characters with descenders.

The horizontal positioning of an accent is controlled by \fontdimen1, slant
per point. Kerns are used for the horizontal movement. Note that, although
they are inserted automatically, these kerns are classified as explicit kerns.
Therefore they inhibit hyphenation in the parts of the word before and after
the kern.

As an example of kerning for accents, here follows the dump of a horizontal
list.

\setbox0=\hbox{\it \`l}
\showbox0

gives
\hbox(9.58334+0.0)x2.55554
.\kern -0.61803 (for accent)
.\hbox(6.94444+0.0)x5.11108, shifted -2.6389
..\tenit ^^R
.\kern -4.49306 (for accent)

46 第 3 章 字符

.\tenit l

Note that the accent is placed first, so afterwards the italic correction of the last
character is still available.

3.4 Testing characters
Equality of character codes is tested by \if:

\if⟨token1⟩⟨token2⟩

Tokens following this conditional are expanded until two unexpandable tokens
are left. The condition is then true if those tokens are character tokens with
the same character code, regardless of category code.

An unexpandable control sequence is considered to have character code 256
and category code 16 (so that it is unequal to anything except another control
sequence), except in the case where it had been \let to a non-active character
token. In that case it is considered to have the character code and category code
of that character. This was mentioned above.

The test \ifcat for category codes was mentioned in Chapter 2; the test

\ifx⟨token1⟩⟨token2⟩

can be used to test for category code and character code simultaneously. The
tokens following this test are not expanded. However, if they are macros, TEX
tests their expansions for equality.

Quantities defined by \chardef can be tested with \ifnum:
\chardef\a=`x \chardef\b=`y \ifnum\a=\b % is false

based on the fact (see Chapter 7) that ⟨chardef token⟩s can be used as numbers.
See also section 13.2

3.5 Uppercase and lowercase

3.5.1 Uppercase and lowercase codes

To each of the character codes correspondan uppercase code and a lowercase
code (for still more codes see below). These can be assigned by

\uccode⟨number⟩⟨equals⟩⟨number⟩

and

\lccode⟨number⟩⟨equals⟩⟨number⟩.

In IniTEX codes `a..`z, `A..`Z have uppercase code `A..`Z and lowercase code
`a..`z. All other character codes have both uppercase and lowercase code zero.

3.5 Uppercase and lowercase 47

3.5.2 Uppercase and lowercase commands

The commands \uppercase{...} and \lowercase{...} go through their ar-
gument lists, replacing all character codes of explicit character tokens by their
uppercase and lowercase code respectively if these are non-zero, without chang-
ing the category codes.

The argument of \uppercase and \lowercase is a ⟨general text⟩, which is
defined as

⟨general text⟩ −→ ⟨filler⟩{⟨balanced text⟩⟨right brace⟩

(for the definition of ⟨filler⟩ see Chapter 36) meaning that the left brace can be
implicit, but the closing right brace must be an explicit character token with
category code 2. TEX performs expansion to find the opening brace.

Uppercasing and lowercasing are executed in the execution processor; they
are not ‘macro expansion’ activities like \number or \string. The sequence (at-
tempting to produce \A)

\expandafter\csname\uppercase{a}\endcsname

gives an error (TEX inserts an \endcsname before the \uppercase because \uppercase
is unexpandable), but

\uppercase{\csname a\endcsname}

works.
As an example of the correct use of \uppercase, here is a macro that tests

if a character is uppercase:
\def\ifIsUppercase#1{\uppercase{\if#1}#1}

The same test can be performed by \ifnum`#1=\uccode`#1.
Hyphenation of words starting with an uppercase character, that is, a char-

acter not equal to its own \lccode, is subject to the \uchyph parameter: if this
is positive, hyphenation of capitalized words is allowed. See also Chapter 19.

3.5.3 Uppercase and lowercase forms of keywords

Each character in TEX keywords, such as pt, can be given in uppercase or
lowercase form. For instance, pT, Pt, pt, and PT all have the same meaning. TEX
does not use the \uccode and \lccode tables here to determine the lowercase
form. Instead it converts uppercase characters to lowercase by adding 32 – the
ascii difference between uppercase and lowercase characters – to their charac-
ter code. This has some implications for implementations of TEX for non-roman
alphabets; see page 370 of the TEX book, [25].

48 第 3 章 字符

3.5.4 Creative use of \uppercase and \lowercase

The fact that \uppercase and \lowercase do not change category codes can
sometimes be used to create certain character-code–category-code combinations
that would otherwise be difficult to produce. See for instance the explanation
of the \newif macro in Chapter 13, and another example on page 44.

For a slightly different application, consider the problem (solved by Rainer
Schöpf) of, given a counter \newcount\mycount, writing character number \mycount
to the terminal. Here is a solution:

\lccode`a=\mycount \chardef\terminal=16
\lowercase{\write\terminal{a}}

The \lowercase command effectively changes the argument of the \write com-
mand from ‘a’ into whatever it should be.

3.6 Codes of a character

Each character code has a number of ⟨codename⟩s associatedcodenames
with it. These are integers in various ranges that determine how the character
is treated in various contexts, or how the occurrence of that character changes
the workings of TEX in certain contexts.

The code names are as follows:

\catcode ⟨4-bit number⟩ (0–15); the category to which a character belongs.
This is treated in Chapter 2.

\mathcode ⟨15-bit number⟩ (0–"7FFF) or "8000; determines how a character is
treated in math mode. See Chapter 21.

\delcode ⟨27-bit number⟩ (0–"7 FFF FFF); determines how a character is treated
after \left or \right in math mode. See page 207.

\sfcode integer; determines how spacing is affected after this character. See
Chapter 20.

\lccode, \uccode ⟨8-bit number⟩ (0-255); lowercase and uppercase codes – these
were treated above.

3.7 Converting tokens into character strings

The command \string takes the next token and expands it into a string of
separate characters. Thus

\tt\string\control

3.7 Converting tokens into character strings 49

will give \control in the output, and
\tt\string$

will give $, but, noting that the string operation comes after the tokenizing,
\tt\string%

will not give %, because the comment sign is removed by TEX’s input processor.
Therefore, this command will ‘string’ the first token on the next line.

The \string command is executed by the expansion processor, thus it is
expanded unless explicitly inhibited (see Chapter 12).

3.7.1 Output of control sequences

In the above examples the typewriter font was selected, because the Com-
puter Modern roman font does not have a backslash character. However, TEX
need not have used the backslash character to display a control sequence: it
uses character number \escapechar. This same value is also used when a con-
trol sequence is output with \write, \message, or \errmessage, and it is used in
the output of \show, \showthe and \meaning. If \escapechar is negative or more
than 255, the escape character is not output; the default value (set in IniTEX)
is 92, the number of the backslash character.

For use in a \write statement the \string can in some circumstances be
replaced by \noexpand (see page 142).

3.7.2 Category codes of a \string

The characters that are the result of a \string command have category
code 12, except for any spaces in a stringed control sequence; they have category
code 10. Since inside a control sequence there are no category codes, any spaces
resulting from \string are of necessity only space characters, that is, charac-
ters with code 32. However, TEX’s input processor converts all space tokens
that have a character code other than 32 into character tokens with character
code 32, so the chances are pretty slim that ‘funny spaces’ wind up in control
sequences.

Other commands with the same behaviour with respect to category codes
as \string, are \number, \romannumeral, \jobname, \fontname, \meaning, and
\the.

第 4 章 Fonts

In text mode TEX takes characters from a ‘current font’. This chapter de-
scribes how fonts are identified to TEX, and what attributes a font can have.

\font Declare the identifying control sequence of a font.

\fontname The external name of a font.

\nullfont Name of an empty font that TEX uses in emergencies.

\hyphenchar Number of the hyphen character of a font.

\defaulthyphenchar Value of \hyphenchar when a font is loaded. Plain TEX
default: `\-.

\fontdimen Access various parameters of fonts.

\char47 Italic correction.

\noboundary Omit implicit boundary character.

4.1 Fonts

In TEX terminology a font is the set of characters that is contained in one
external font file. During processing, TEX decides from what font a character
should be taken. This decision is taken separately for text mode and math
mode.

When TEX is processing ordinary text, characters are taken from the ‘cur-
rent font’. External font file names are coupled to control sequences by state-
ments such as

\font\MyFont=myfont10

which makes TEX load the file myfont10.tfm. Switching the current font to the
font described in that file is then done by

\MyFont

The status of the current font can be queried: the sequence

50

4.2 Font declaration 51

\the\font

produces the control sequence for the current font.
Math mode completely ignores the current font. Instead it looks at the

‘current family’, which can contain three fonts: one for text style, one for script
style, and one for scriptscript style. This is treated in Chapter 21.

See [42] for a consistent terminology of fonts and typefaces.
With ‘virtual fonts’ (see [24]) it is possible that what looks like one font to

TEX resides in more than one physical font file. See further page 285.

4.2 Font declaration

Somewhere during a run of TEX or IniTEX the coupling between an internal
identifying control sequence and the external file name of a font has to be made.
The syntax of the command for this is

\font⟨control sequence⟩⟨equals⟩⟨file name⟩⟨at clause⟩

where

⟨at clause⟩ −→ at ⟨dimen⟩ | scaled ⟨number⟩ | ⟨optional spaces⟩

Font declarations are local to a group.
By the ⟨at clause⟩ the user specifies that some magnified version of the

font is wanted. The ⟨at clause⟩ comes in two forms: if the font is given scaled f
TEX multiplies all its font dimensions for that font by f/1000; if the font has a
design size dpt and the ⟨at clause⟩ is at ppt TEX multiplies all font data by p/d.
The presence of an ⟨at clause⟩makes no difference for the external font file (the
.tfm file) that TEX reads for the font; it just multiplies the font dimensions by
a constant.

After such a font declaration, using the defined control sequence will set
the current font to the font of the control sequence.

4.2.1 Fonts and tfm files

The external file needed for the font is a tfm (TEX font metrics) file, which is
taken independent of any ⟨at clause⟩ in the \font declaration. If the tfm file has
been loaded already (for instance by IniTEX when it constructed the format), an
assignment of that font file can be reexecuted without needing recourse to the
tfm file.

Font design sizes are given in the font metrics files. The cmr10 font, for
instance, has a design size of 10 point. However, there is not much in the font

52 第 4 章 Fonts

that actually has a size of 10 points: the opening and closing parentheses are
two examples, but capital letters are considerably smaller.

4.2.2 Querying the current font and font names

It was already mentioned above that the control sequence which set the
current font can be retrieved by the command \the\font. This is a special case
of

\the⟨font⟩
where

⟨font⟩ −→ \font | ⟨fontdef token⟩ | ⟨family member⟩
⟨family member⟩ −→ ⟨font range⟩⟨4-bit number⟩
⟨font range⟩ −→ \textfont | \scriptfont | \scriptscriptfont

A ⟨fontdef token⟩ is a control sequence defined by \font, or the predefined con-
trol sequence \nullfont. The concept of ⟨family member⟩ is only relevant in
math mode.

Also, the external name of fonts can be retrieved:

\fontname⟨font⟩
gives a sequence of character tokens of category 12 (but space characters get
category 10) that spells the font file name, plus an ⟨at clause⟩ if applicable.

例子：After

\font\tenroman=cmr10 \tenroman

the calls \the\font and \the\tenroman both give \tenroman. The call
\fontname\tenroman gives cmr10.

4.2.3 \nullfont

TEX always knows a font that has no characters: the \nullfont. If no font
has been specified, or if in math mode a family member is needed that has
not been specified, TEX will take its characters from the nullfont. This control
sequence qualifies as a ⟨fontdef token⟩: it acts like any other control sequence
that stands for a font; it just does not have an associated tfm file.

4.3 Font information
During a run of TEX the main information needed about the font consists

of the dimensions of the characters. TEX finds these in the font metrics files,
which usually have extension .tfm. Such files contain

4.3 Font information 53

• global information: the \fontdimen parameters, and some other informa-
tion,

• dimensions and the italic corrections of characters, and

• ligature and kerning programs for characters.

Also, the design size of a font is specified in the tfm file; see above. The definition
of the tfm format can be found in [23].

4.3.1 Font dimensions

Text fonts need to have at least seven \fontdimen parameters to describe
font dimensions (but TEX will take zero for unspecified parameters); math sym-
bol and math extension fonts have more (see page 224). For text fonts the min-
imal set of seven comprises the following:

1. the slant per point; this dimension is used for the proper horizontal posi-
tioning of accents;

2. the interword space: this is used unless the user specifies an explicit \spaceskip;
see Chapter 20;

3. interword stretch: the stretch component of the interword space;

4. interword shrink: the shrink component of the interword space;

5. the x-height: the value of the ⟨internal unit⟩ ex, which is usually about the
height of the lowercase letter ‘x’;

6. the quad width: the value of the ⟨internal unit⟩ em, which is approximately
the width of the capital letter ‘M’; and

7. the extra space: the space added to the interword space at the end of sen-
tences (that is, when \spacefactor ≥ 2000) unless the user specifies an
explicit \xspaceskip.

Parameters 1 and 5 are purely information about the font and there is no
point in varying them. The values of other parameters can be changed in order
to adjust spacing; see Chapter 20 for examples of changing parameters 2, 3, 4,
and 7.

Font dimensions can be altered in a ⟨font assignment⟩, which is a ⟨global
assignment⟩ (see page 113):

\fontdimen⟨number⟩⟨font⟩⟨equals⟩⟨dimen⟩

See above for the definition of ⟨font⟩.

54 第 4 章 Fonts

4.3.2 Kerning

Some combinations of characters should be moved closer together than
would be the case if their bounding boxes were to be just abutted. This fine
spacing is called kerning, and a proper kerning is as essential to a font as the
design of the letter shapes.

Consider as an example

‘Vo’ versus the unkerned variant ‘Vo’

Kerning in TEX is controlled by information in the tfm file, and is there-
fore outside the influence of the user. The tfm file can be edited, however (see
Chapter 33).

The \kern command has (almost) nothing to do with the phenomenon of
kerning; it is explained in Chapter 8.

4.3.3 Italic correction

The primitive control symbol \/ inserts the italic correctionof the previous
character or ligature. Such a correction may be necessary owing to the defi-
nition of the bounding box of a character. This box always has vertical sides,
and the width of the character as TEX perceives it is the distance between these
sides. However, in order to achieve proper spacing for slanted or italic type-
faces, characters may very well project outside their bounding boxes. The italic
correction is then needed if such an overhanging character is followed by a char-
acter from a non-slanting typeface.

Compare for instance

‘TEX has’ to ‘TEX has’,

where the second version was typed as
{\italic\TeX\/} has

The size of the italic correction of each character is determined by font in-
formation in the font metrics file; for the Computer Modern fonts it is approx-
imately half the ‘overhang’ of the characters; see [17]. Italic correction is not
the same as \fontdimen1, slant per point. That font dimension is used only for
positioning accents on top of characters.

An italic correction can only be inserted if the previous item processed by
TEX was a character or ligature. Thus the following solution for roman text
inside an italic passage does not work:

{\italic Some text {\/\roman not} emphasized}

The italic correction has no effect here, because the previous item is glue.

4.3 Font information 55

4.3.4 Ligatures

Replacement of character sequences by ligatures is controlled by informa-
tion in the tfm file of a font. Ligatures are formed from ⟨character⟩ commands:
sequences such as fi are replaced by ‘fi’ in some fonts.

Other ligatures traditionally in use are between ff, ffi, fl, and ffl; in
some older works ft and st can be found, and similarly to the fl ligature fk
and fb can also occur.

Ligatures in TEX can be formed between explicit character tokens, \char
commands, and ⟨chardef token⟩s. For example, the sequence \char`f\char`i
is replaced by the ‘fi’ ligature, if such a ligature is part of the font.

Unwanted ligatures can be suppressed in a number of ways: the unwanted
ligature ‘halflife’ can for instance be prevented by

half{}life, half{l}ife, half\/life, or half\hbox{}life

but the solution using italic correction is not equivalent to the others.

4.3.5 Boundary ligatures

Each word is surrounded by a left and a right boundary character (TEX3
only). This makes phenomena possible such as the two different sigmas in
Greek: one at the end of a word, and one for every other position. This can be
realized through a ligature with the boundary character. A \noboundary com-
mand immediately before or after a word suppresses the boundary character at
that place.

In general, the ligature mechanism has become more complicated with the
transition to TEX version 3; see [20].

第 5 章 Boxes

The horizontal and vertical boxes of TEX are containers for pieces of hor-
izontal and vertical lists. Boxes can be stored in box registers. This chapter
treats box registers and such aspects of boxes as their dimensions, and the way
their components are placed relative to each other.

\hbox Construct a horizontal box.

\vbox Construct a vertical box with reference point of the last item.

\vtop Construct a vertical box with reference point of the first item.

\vcenter Construct a vertical box vertically centred on the math axis; this
command can only be used in math mode.

\vsplit Split off the top part of a vertical box.

\box Use a box register, emptying it.

\setbox Assign a box to a box register.

\copy Use a box register, but retain the contents.

\ifhbox \ifvbox Test whether a box register contains a horizontal/vertical
box.

\ifvoid Test whether a box register is empty.

\newbox Allocate a new box register.

\unhbox \unvbox Unpack a box register containing a horizontal/vertical box,
adding the contents to the current horizontal/vertical list, and emptying
the register.

\unhcopy \unvcopy The same as \unhbox / \unvbox, but do not empty the
register.

\ht \dp \wd Height/depth/width of the box in a box register.

\boxmaxdepth Maximum allowed depth of boxes. Plain TEX
default: \maxdimen.

56

5.1 Boxes 57

\splitmaxdepth Maximum allowed depth of boxes generated by \vsplit.

\badness Badness of the most recently constructed box.

\hfuzz \vfuzz Excess size that TEX tolerates before it considers a
horizontal/vertical box overfull.

\hbadness \vbadness Amount of tolerance before TEX reports an underfull or
overfull horizontal/vertical box.

\overfullrule Width of the rule that is printed to indicate overfull horizontal
boxes.

\hsize Line width used for text typesetting inside a vertical box.

\vsize Height of the page box.

\lastbox Register containing the last item added to the current list, if this
was a box.

\raise \lower Adjust vertical positioning of a box in horizontal mode.

\moveleft \moveright Adjust horizontal positioning of a box in vertical mode.

\everyhbox \everyvbox Token list inserted at the start of a
horizontal/vertical box.

5.1 Boxes

In this chapter we shall look at boxes. Boxes are containers for pieces of
horizontal or vertical lists. Boxes that are needed more than once can be stored
in box registers.

When TEX expects a ⟨box⟩, any of the following forms is admissible:

• \hbox⟨box specification⟩{⟨horizontal material⟩}

• \vbox⟨box specification⟩{⟨vertical material⟩}

• \vtop⟨box specification⟩{⟨vertical material⟩}

• \box⟨8-bit number⟩

• \copy⟨8-bit number⟩

• \vsplit⟨8-bit number⟩to⟨dimen⟩

• \lastbox

A ⟨box specification⟩ is defined as

⟨box specification⟩ −→ ⟨filler⟩
| to ⟨dimen⟩⟨filler⟩ | spread ⟨dimen⟩⟨filler⟩

An ⟨8-bit number⟩ is a number in the range 0–255.

58 第 5 章 Boxes

The braces surrounding box material define a group; they can be explicit
characters of categories 1 and 2 respectively, or control sequences \let to such
characters; see also below.

A ⟨box⟩ can in general be used in horizontal, vertical, and math mode, but
see below for the \lastbox. The connection between boxes and modes is ex-
plored further in Chapter 6.

The box produced by \vcenter – a command that is allowed only in math
mode – is not a ⟨box⟩. For instance, it can not be assigned with \setbox; see
further Chapter 23.

The \vsplit operation is treated in Chapter 27.

5.2 Box registers

There are 256 box registers, numbered 0–255. Either a box register is
empty (‘void’), or it contains a horizontal or vertical box. This section discusses
specifically box registers; the sizes of boxes, and the way material is arranged
inside them, is treated below.

5.2.1 Allocation: \newbox

The plain TEX \newbox macro allocates an unused box register:
\newbox\MyBox

after which one can say
\setbox\MyBox=...

or
\box\MyBox

and so on. Subsequent calls to this macro give subsequent box numbers; this
way macro collections can allocate their own boxes without fear of collision with
other macros.

The number of the box is assigned by \chardef (see Chapter 31). This im-
plies that \MyBox is equivalent to, and can be used as, a ⟨number⟩. The control
sequence \newbox is an \outer macro. Newly allocated box registers are ini-
tially empty.

5.2.2 Usage: \setbox, \box, \copy

A register is filled by assigning a ⟨box⟩ to it:

\setbox⟨number⟩⟨equals⟩⟨box⟩

5.2 Box registers 59

For example, the ⟨box⟩ can be explicit

\setbox37=\hbox{...} or \setbox37=\vbox{...}

or it can be a box register:
\setbox37=\box38

Usually, box numbers will have been assigned by a \newbox command.

The box in a box register is appended by the commands \box and \copy to
whatever list TEX is building: the call

\box38

appends box 38. To save memory space, box registers become empty by using
them: TEX assumes that after you have inserted a box by calling \boxnn in some
mode, you do not need the contents of that register any more and empties it. In
case you do need the contents of a box register more than once, you can \copy it.
Calling \copynn is equivalent to \boxnn in all respects except that the register
is not cleared.

It is possible to unwrap the contents of a box register by ‘unboxing’ it using
the commands \unhbox and \unvbox, and their copying versions \unhcopy and
\unvcopy. Whereas a box can be used in any mode, the unboxing operations can
only be used in the appropriate mode, since in effect they contribute a partial
horizontal or vertical list (see also Chapter 6). See below for more information
on unboxing registers.

5.2.3 Testing: \ifvoid, \ifhbox, \ifvbox

Box registers can be tested for their contents:

\ifvoid⟨number⟩

is true if the box register is empty. Note that an empty, or ‘void’, box register is
not the same as a register containing an empty box. An empty box is still either
a horizontal or a vertical box; a void register can be used as both.

The test

\ifhbox⟨number⟩

is true if the box register contains a horizontal box;

\ifvbox⟨number⟩

is true if the box register contains a vertical box. Both tests are false for void
registers.

60 第 5 章 Boxes

5.2.4 The \lastbox

When TEX has built a partial list, the last box in this list is accessible as
the \lastbox. This behaves like a box register, so you can remove the last box
from the list by assigning the \lastbox to some box register. If the last item
on the current list is not a box, the \lastbox acts like a void box register. It is
not possible to get hold of the last box in the case of the main vertical list. The
\lastbox is then always void.

As an example, the statement
{\setbox0=\lastbox}

removes the last box from the current list, assigning it to box register 0. Since
this assignment occurs inside a group, the register is cleared at the end of the
group. At the start of a paragraph this can be used to remove the indentation
box (see Chapter 16). Another example of \lastbox can be found on page 72.

Because the \lastbox is always empty in external vertical mode, it is not
possible to get hold of boxes that have been added to the page. However, it is
possible to dissect the page once it is in \box255, for instance doing

\vbox{\unvbox255{\setbox0=\lastbox}}

inside the output routine.
If boxes in vertical mode have been shifted by \moveright or \moveleft, or

if boxes in horizontal mode have been raised by \raise or lowered by \lower,
any information about this displacement due to such a command is lost when
the \lastbox is taken from the list.

5.3 Natural dimensions of boxes

5.3.1 Dimensions of created horizontal boxes

Inside an \hbox all constituents are lined up next to each other, with their
reference points on the baseline of the box, unless they are moved explicitly in
the vertical direction by \lower or \raise.

The resulting width of the box is the sum of the widths of the components.
Thus the width of

\hbox{\hskip1cm}

is positive, and the width of
\hbox{\hskip-1cm}

is negative. By way of example,

a\hbox{\kern-1em b}--

5.3 Natural dimensions of boxes 61

gives as output

ab–

which shows that a horizontal box can have negative width.
The height and depth of an \hbox are the maximum amount that con-

stituent boxes project above and below the baseline of the box. They are non-
negative when the box is created.

The commands \lower and \raise are the only possibilities for vertical
movement inside an \hbox (other than including a \vbox inside the \hbox, of
course); a ⟨vertical command⟩ – such as \vskip – is not allowed in a horizontal
box, and \par, although allowed, does not do anything inside a horizontal box.

5.3.2 Dimensions of created vertical boxes

Inside a \vbox vertical material is lined up with the reference points on
the vertical line through the reference point of the box, unless components are
moved explicitly in the horizontal direction by \moveleft or \moveright.

The reference point of a vertical box is always located at the left boundary
of the box. The width of a vertical box is then the maximal amount that any
material in the box sticks to the right of the reference point. Material to the left
of the reference point is not taken into account in the width. Thus the result of

a\vbox{\hbox{\kern-1em b}}--

is

ab –

This should be contrasted with the above example.
The calculation of height and depth is different for vertical boxes constructed

by \vbox and \vtop. The ground rule is that a \vbox has a reference point that
lies on the baseline of its last component, and a \vtop has its reference point
on the baseline of the first component. In general, the depth (height) of a \vbox
(\vtop) can be non-zero if the last (first) item is a box or rule.

The height of a \vbox is then the sum of the heights and depths of all com-
ponents except the last, plus the height of that last component; the depth of the
\vbox is the depth of its last component. The depth of a \vtop is the sum of
the depth of the first component and the heights and depths of all subsequent
material; its height is the height of the first component.

However, the actual rules are a bit more complicated when the first compo-
nent of a \vtop or the last component of a \vbox is not a box or rule. If the last
component of a \vbox is a kern or a glue, the depth of that box is zero; a \vtop’s
height is zero unless its first component is a box or rule. (Note the asymmetry

62 第 5 章 Boxes

in these definitions; see below for an example illustrating this.) The depth of
a \vtop, then, is equal to the total height plus depth of all enclosed material
minus the height of the \vtop.

There is a limit on the depth of vertical boxes: if the depth of a \vbox or
\vtop calculated by the above rules would exceed , the reference point of the box
is moved down by the excess amount. More precisely, the excess depth is added
to the natural height of the box. If the box had a to or spread specification, any
glue is set anew to take the new height into account.

Ordinarily, \boxmaxdepth is set to the maximum dimension possible in TEX.
It is for instance reduced during some of the calculations in the plain TEX output
routine; see Chapter 28.

5.3.3 Examples

Horizontal boxes are relatively straightforward. Their width is the dis-
tance between the ‘beginning’ and the ‘end’ of the box, and consequently the
width is not necessarily positive. With

\setbox0=\hbox{aa} \setbox1=\hbox{\copy0 \hskip-\wd0}

the \box1 has width zero;

/\box1/ gives ‘/aa/ ’

The height and depth of a horizontal box cannot be negative: in
\setbox0=\hbox{\vrule height 5pt depth 5pt}
\setbox1=\hbox{\raise 10pt \box0}

the \box1 has depth 0pt and height 15pt
Vertical boxes are more troublesome than horizontal boxes. Let us first

treat their width. After
\setbox0=\hbox{\hskip 10pt}

the box in the \box0 register has a width of 10pt. Defining
\setbox1=\vbox{\moveleft 5pt \copy0}

the \box1 will have width 5pt; material to the left of the reference point is not
accounted for in the width of a vertical box. With

\setbox2=\vbox{\moveright 5pt \copy0}

the \box2 will have width 15pt.

The depth of a \vbox is the depth of the last item if that is a box, so
\vbox{\vskip 5pt \hbox{\vrule height 5pt depth 5pt}}

has height 10pt and depth 5pt, and
\vbox{\vskip -5pt \hbox{\vrule height 5pt depth 5pt}}

5.4 More about box dimensions 63

has height 0pt and depth 5pt. With a glue or kern as the last item in the box,
the resulting depth is zero, so

\vbox{\hbox{\vrule height 5pt depth 5pt}\vskip 5pt}

has height 15pt and depth 0pt;
\vbox{\hbox{\vrule height 5pt depth 5pt}\vskip -5pt}

has height 5pt and depth 0pt.
The height of a \vtop behaves (almost) the same with respect to the first

item of the box, as the depth of a \vbox does with respect to the last item. Re-
peating the above examples with a \vtop gives the following:

\vtop{\vskip 5pt \hbox{\vrule height 5pt depth 5pt}}

has height 0pt and depth 15pt, and
\vtop{\vskip -5pt \hbox{\vrule height 5pt depth 5pt}}

has height 0pt and depth 5pt;
\vtop{\hbox{\vrule height 5pt depth 5pt} \vskip 5pt}

has height 5pt and depth 10pt, and
\vtop{\hbox{\vrule height 5pt depth 5pt} \vskip -5pt}

has height 5pt and depth 0pt.

5.4 More about box dimensions

5.4.1 Predetermined dimensions

The size of a box can be specified in advance with a ⟨box specification⟩;
see above for the syntax. Any glue in the box is then set in order to reach the
required size. Prescribing the size of the box is done by

\hbox to ⟨dimen⟩ {...}, \vbox to ⟨dimen⟩ {...}

If stretchable or shrinkable glue is present in the box, it is stretched or shrunk
in order to give the box the specified size. Associated with this glue setting is a
badness value (see Chapter 8). If no stretch or shrink – whichever is necessary –
is present, the resulting box will be underfull or overfull respectively. Error
reporting for over/underfull boxes is treated below.

Another command to let a box have a size other than the natural size is

\hbox spread ⟨dimen⟩ {...}, \vbox spread ⟨dimen⟩ {...}

which tells TEX to set the glue in such a way that the size of the box is a specified
amount more than the natural size.

Box specifications for \vtop vertical boxes are somewhat difficult to inter-
pret. TEX constructs a \vtop by first making a \vbox, including glue settings

64 第 5 章 Boxes

induced by a ⟨box specification⟩; then it computes the height and depth by the
above rules. Glue setting is described in Chapter 8.

5.4.2 Changes to box dimensions

The dimensions of a box register are accessible by the commands \ht, \dp,
and \wd; for instance \dp13 gives the depth of box 13. However, not only can
boxes be measured this way; by assigning values to these dimensions TEX can
even be fooled into thinking that a box has a size different from its actual. How-
ever, changing the dimensions of a box does not change anything about the
contents; in particular it does not change the way the glue is set.

Various formats use this in ‘smash’ macros: the macro defined by
\def\smash#1{{\setbox0=\hbox{#1}\dp0=0pt \ht0=0pt \box0\relax}}

places its argument but annihilates its height and depth; that is, the output
does show the whole box, but further calculations by TEX act as if the height
and depth were zero.

Box dimensions can be changed only by setting them. They are ⟨box di-
men⟩s, which can only be set in a ⟨box size assignment⟩, and not, for instance
changed with \advance.

Note that a ⟨box size assignment⟩ is a ⟨global assignment⟩ its effect tran-
scends any groups in which it occurs (see Chapter 10). Thus the output of

\setbox0=\hbox{---} {\wd0=0pt} a\box0b

is ‘a—b ’.

The limits that hold on the dimensions with which a box can be created
(see above) do not hold for explicit changes to the size of a box: the assignment
\dp0=-2pt for a horizontal box is perfectly admissible.

5.4.3 Moving boxes around

In a horizontal box all constituent elements are lined up with their refer-
ence points at the same height as the reference point of the box. Any box inside
a horizontal box can be lifted or dropped using the macros \raise and \lower.

Similarly, in a vertical box all constituent elements are lined up with their
reference points underneath one another, in line with the reference point of the
box. Boxes can now be moved sideways by the macros \moveleft and \moveright.

Only boxes can be shifted thus; these operations cannot be applied to, for
instance, characters or rules.

5.4 More about box dimensions 65

5.4.4 Box dimensions and box placement

TEX places the components of horizontal and vertical lists by maintaining
a reference line and a current position on that line. For horizontal lists the
reference line is the baseline of the surrounding \hbox; for vertical lists it is the
vertical line through the reference point of the surrounding \vbox.

In horizontal mode a component is placed as follows. The current position
coincides initially with the reference point of the surrounding box. After that,
the following actions are carried out.

1. If the component has been shifted by \raise or \lower, shift the current
position correspondingly.

2. If the component is a horizontal box, use this algorithm recursively for its
contents; if it is a vertical box, go up by the height of this box, putting
a new current position for the enclosed vertical list there, and place its
components using the algorithm for vertical lists below.

3. Move the current position (on the reference line) to the right by the width
of the component.

For the list in a vertical box TEX’s current position is initially at the upper
left corner of that box, as explained above, and the reference line is the vertical
line through that point; it also runs through the reference point of the box.
Enclosed components are then placed as follows.

1. If a component has been shifted using \moveleft or \moveright, shift the
current position accordingly.

2. Put the component with its upper left corner at the current position.

3. If the component is a vertical box, use this algorithm recursively for its
contents; if it is a horizontal box, its reference point can be found below the
current position by the height of the box. Put the current position for that
box there, and use the above algorithm for horizontal lists.

4. Go down by the height plus depth of the box (that is, starting at the up-
per left corner of the box) on the reference line, and continue processing
vertically.

Note that the above processes do not describe the construction of boxes. That
would (for instance) involve for vertical boxes the insertion of baselineskip glue.
Rather, it describes the way the components of a finished box are arranged in
the output.

66 第 5 章 Boxes

5.4.5 Boxes and negative glue

Sometimes it is useful to have boxes overlapping instead of line up. An
easy way to do this is to use negative glue. In horizontal mode

{\dimen0=\wd8 \box8 \kern-\dimen0}

places box 8 without moving the current location.
More versatile are the macros \llap and \rlap, defined as
\def\llap#1{\hbox to 0pt{\hss #1}}

and
\def\rlap#1{\hbox to 0pt{#1\hss}}

that allow material to protrude left or right from the current location. The \hss
glue is equivalent to \hskip 0pt plus 1fil minus 1fil, which absorbs any
positive or negative width of the argument of \llap or \rlap.

例子：The sequence

\llap{\hbox to 10pt{a\hfil}}

is effectively the same as

\hbox{\hskip-10pt \hbox to 10pt{a\hfil}}

which has a total width of 0pt.

5.5 Overfull and underfull boxes
If a box has a size specification TEX will stretch or shrink glue in the box.

For glue with only finite stretch or shrink components the badness (see Chap-
ter 19) of stretching or shrinking is computed. In TEX version 3 the badness of
the box most recently constructed is available for inspection by the user through
the \badness parameter. Values for badness range 0–10 000, but if the box is
overfull it is 1 000 000.

When TEX considers the badness too large, it gives a diagnostic message.
Let us first consider error reporting for horizontal boxes.

Horizontal boxes of which the glue has to stretch are never reported if
\hbadness ≥ 10 000; otherwise TEX reports them as ‘underfull’ if their badness
is more than \hbadness.

Glue shrinking can lead to ‘overfull’ boxes: a box is called overfull if the
available shrink is less than the shrink necessary to meet the box specification.
An overfull box is only reported if the difference in shrink is more than \hfuzz,
or if \hbadness < 100 (and it turns out that using all available shrinkability
has badness 100).

5.6 Opening and closing boxes 67

例子：Setting \hfuzz=1pt will let TEX ignore boxes that can not shrink
enough if they lack less than 1pt. In

\hbox to 1pt{\hskip3pt minus .5pt}

\hbox to 1pt{\hskip3pt minus 1.5pt}

only the first box will give an error message: it is 1.5pt too big, whereas
the second lacks .5pt which is less than \hfuzz.

Also, boxes that shrink but that are not overfull can be reported: if a box
is ‘tight’, that is, if it uses at least half its shrinkability, TEX reports this fact if
the computed badness (which is between 13 and 100) is more than \hbadness.

For horizontal and vertical boxes this error reporting is almost the same,
with parameters \vbadness and \vfuzz. The difference is that for horizontal
overfull boxes TEX will draw a rule to the right of the box that has the same
height as the box, and width \overfullrule. No overfull rule ensues if the
\tabskip glue in an \halign cannot be shrunk enough.

5.6 Opening and closing boxes

The opening and closing braces of a box can be either explicit, that is, char-
acter tokens of category 1 and 2, or implicit, a control sequence \let to such
a character. After the opening brace the \everyhbox or \everyvbox tokens are
inserted. If this box appeared in a \setbox assignment any \afterassignment
token is inserted even before the ‘everybox’ tokens.

例子：

\everyhbox{b}
\afterassignment a
\setbox0=\hbox{c}
\showbox0

gives

> \box0=
\hbox(6.94444+0.0)x15.27782
.\tenrm a
.\tenrm b
.\kern0.27779
.\tenrm c

Implicit braces can be used to let a box be opened or closed by a macro, for
example:

68 第 5 章 Boxes

\def\openbox#1{\setbox#1=\hbox\bgroup}
\def\closebox#1{\egroup\DoSomethingWithBox#1}
\openbox0 ... \closebox0

This mechanism can be used to scoop up paragraphs:
\everypar{\setbox\parbox=

\vbox\bgroup
\everypar{}
\def\par{\egroup\UseBox\parbox}}

Here the \everypar opens the box and lets the text be set in the box: starting
for instance

Begin a text ...

gives the equivalent of
\setbox\parbox=\vbox{Begin a text ...

Inside the box \par has been redefined, so
... a text ends.\par

is equivalent to
... a text ends.}\Usebox\parbox

In this example, the \UseBox command can only treat the box as a whole; if
the elements of the box should somehow be treated separately another approach
is necessary. In

\everypar{\setbox\parbox=
\vbox\bgroup\everypar{}%

\def\par{\endgraf\HandleLines
\egroup\box\parbox}}

\def\HandleLines{ ... \lastbox ... }

the macro \HandleLines can have access to successive elements from the verti-
cal list of the paragraph. See also the example on page 72.

5.7 Unboxing

Boxes can be unwrapped by the commands \unhbox and \unvbox, and by
their copying versions \unhcopy and \unvcopy. These are horizontal and ver-
tical commands (see Chapter 6), considering that in effect they contribute a
partial horizontal or vertical list. It is not possible to \unhbox a register con-
taining a \vbox or vice versa, but a void box register can both be \unhboxed and
\unvboxed.

Unboxing takes the contents of a box in a box register and appends them
to the surrounding list; any glue can then be set anew. Thus

\setbox0=\hbox to 1cm{\hfil} \hbox to 2cm{\unhbox0}

5.8 Text in boxes 69

is completely equivalent to
\hbox to 2cm{\hfil}

and not to
\hbox to 2cm{\kern1cm}

The intrinsically horizontal nature of \unhbox is used to define
\def\leavevmode{\unhbox\voidb@x}

This command switches from vertical mode to horizontal without adding any-
thing to the horizontal list. However, the subsequent \indent caused by this
transition adds an indentation box. In horizontal mode the \leavevmode com-
mand has no effect. Note that here it is not necessary to use \unhcopy, because
the register is empty anyhow.

Beware of the following subtlety: unboxing in vertical mode does not add
interline glue between the box contents and any preceding item. Also, the value
of \prevdepth is not changed, so glue between the box contents and any follow-
ing item will occur only if there was something preceding the box; interline
glue will be based on the depth of that preceding item. Similarly, unboxing in
horizontal mode does not influence the \spacefactor.

5.8 Text in boxes

Both horizontal and vertical boxes can contain text. However, the way text
is treated differs. In horizontal boxes the text is placed in one straight line,
and the width of the box is in principle the natural width of the text (and other
items) contained in it. No ⟨vertical command⟩s are allowed inside a horizontal
box, and \par does nothing in this case.

For vertical boxes the situation is radically different. As soon as a char-
acter, or any other ⟨horizontal command⟩ (see page 76), is encountered in a
vertical box, TEX starts building a paragraph in unrestricted horizontal mode,
that is, just as if the paragraph were directly part of the page. At the occurrence
of a ⟨vertical command⟩ (see page 76), or at the end of the box, the paragraph
is broken into lines using the current values of parameters such as \hsize.

Thus
\hbox to 3cm{\vbox{some reasonably long text}}

will not give a paragraph of width 3 centimetres (it gives an overfull horizontal
box if \hsize > 3cm). However,

\vbox{\hsize=3cm some reasonably long text}

will be 3 centimetres wide.

70 第 5 章 Boxes

A paragraph of text inside a vertical box is broken into lines, which are
packed in horizontal boxes. These boxes are then stacked in internal verti-
cal mode, possibly with \baselineskip and \lineskip separating them (this is
treated in Chapter 15). This process is also used for text on the page; the boxes
are then stacked in outer vertical mode.

If the internal vertical list is empty, no \parskip glue is added at the start
of a paragraph.

Because text in a horizontal box is not broken into lines, there is a further
difference between text in restricted and unrestricted horizontal mode. In re-
stricted horizontal mode no discretionary nodes and whatsit items changing the
value of the current language are inserted. This may give problems if the text
is subsequently unboxed to form part of a paragraph.

See Chapter 19 for an explanation of these items, and [7] for a way around
this problem.

5.9 Assorted remarks

5.9.1 Forgetting the \box

After \newcount\foo, one can use \foo on its own to get the \foo counter.
For boxes, however, one has to use \box\foo to get the \foo box. The reason
for this is that there exists no separate \boxdef command, so \chardef is used
(see Chapter 31).

例子：Suppose \newbox\foo allocates box register 25; then typing \foo
is equivalent to typing \char25.

5.9.2 Special-purpose boxes

Some box registers have a special purpose:

• \box255 is by used TEX internally to give the page to the output routine.

• \voidb@x is the number of a box register allocated in plain.tex; it is sup-
posed to be empty always. It is used in the macro \leavevmode and others.

• when a new \insert is created with the plain TEX \newinsert macro, a
\count, \dimen, \skip, and \box all with the same number are reserved for
that insert. The numbers for these registers count down from 254.

5.9 Assorted remarks 71

5.9.3 The height of a vertical box in horizontal mode

In horizontal mode a vertical box is placed with its reference point aligned
vertically with the reference point of the surrounding box. TEX then traverses
its contents starting at the left upper corner; that is, the point that lies above
the reference point by a distance of the height of the box. Changing the height
of the box implies then that the contents of the box are placed at a different
height.

Consider as an example
\hbox{a\setbox0=\vbox{\hbox{b}}\box0 c}

which gives

abc

and
\hbox{a\setbox0=\vbox{\hbox{b}}\ht0=0cm \box0 c}

which gives

a
b

c

By contrast, changing the width of a box placed in vertical mode has no
effect on its placement.

5.9.4 More subtleties with vertical boxes

Since there are two kinds of vertical boxes, the \vbox and the \vtop, using
these two kinds nested may lead to confusing results. For instance,

\vtop{\vbox{...}}

is completely equivalent to just
\vbox{...}

It was stated above that the depth of a \vbox is zero if the last item is a
kern or glue, and the height of a \vtop is zero unless the first item in it is a box.
The above examples used a kern for that first or last item, but if, in the case of
a \vtop, this item is not a glue or kern, one is apt to overlook the effect that it
has on the surrounding box. For instance,

\vtop{\write16{...}...}

has zero height, because the write instruction is packed into a ‘whatsit’ item
that is placed on the current, that is, the vertical, list. The remedy here is

\vtop{\leavevmode\write16{...}...}

which puts the whatsit in the beginning of the paragraph, instead of above it.
Placement of items in a vertical list is sometimes a bit tricky. There is for

instance a difference between how vertical and horizontal boxes are treated in

72 第 5 章 Boxes

a vertical list. Consider the following examples. After \offinterlineskip the
first example

\vbox{\hbox{a}
\setbox0=\vbox{\hbox{(}}
\ht0=0pt \dp0=0pt \box0
\hbox{ b}}

gives
a
(b

while a slight variant
\vbox{\hbox{a}

\setbox0=\hbox{(}
\ht0=0pt \dp0=0pt \box0
\hbox{ b}}

gives
a(
b

The difference is caused by the fact that horizontal boxes are placed with re-
spect to their reference point, but vertical boxes with respect to their upper left
corner.

5.9.5 Hanging the \lastbox back in the list

You can pick the last box off a vertical list that has been compiled in (in-
ternal) vertical mode. However, if you try to hang it back in the list the vertical
spacing may go haywire. If you just hang it back,

\setbox\tmpbox=\lastbox
\usethetmpbox \box\tmpbox

baselineskip glue is added a second time. If you ‘unskip’ prior to hanging the
box back,

\setbox\tmpbox=\lastbox \unskip
\usethetmpbox \box\tmpbox

things go wrong in a more subtle way. The ⟨internal dimen⟩ \prevdepth (which
controls interline glue; see Chapter 15) will have a value based on the last box,
but what you need for the proper interline glue is a depth based on one box
earlier. The solution is not to unskip, but to specify \nointerlineskip:

\setbox\tmpbox=\lastbox
\usethetmpbox \nointerlineskip \box\tmpbox

5.9 Assorted remarks 73

5.9.6 Dissecting paragraphs with \lastbox

Repeatedly applying \last... and \un... macros can be used to take a
paragraph apart. Here is an example of that.

In typesetting advertisement copy, a way of justifying
paragraphs has become popular in recent years that
is somewhere between flushright and raggedright
setting. Lines that would stretch beyond certain
limits are set with their glue at natural width. This
single paragraph is but an example of this procedure;
the macros are given next.

\newbox\linebox \newbox\snapbox
\def\eatlines{

\setbox\linebox\lastbox % check the last line
\ifvoid\linebox
\else % if it's not empty
\unskip\unpenalty % take whatever is
{\eatlines} % above it;

% collapse the line
\setbox\snapbox\hbox{\unhcopy\linebox}

% depending on the difference
\ifdim\wd\snapbox<.98\wd\linebox

\box\snapbox % take the one or the other,
\else \box\linebox \fi
\fi}

This macro can be called as
\vbox{ ... some text ... \par\eatlines}

or it can be inserted automatically with \everypar; see [10].
In the macro \eatlines, the \lastbox is taken from a vertical list. If the

list is empty the last box will test true on \ifvoid. These boxes containing
lines from a paragraph are actually horizontal boxes: the test \ifhbox applied
to them would give a true result.

第 6 章 Horizontal and Vertical Mode

At any point in its processing TEX is in some mode. There are six modes,
divided in three categories:

1. horizontal mode and restricted horizontal mode,

2. vertical mode and internal vertical mode, and

3. math mode and display math mode.

The math modes will be treated elsewhere (see page 217). Here we shall look
at the horizontal and vertical modes, the kinds of objects that can occur in the
corresponding lists, and the commands that are exclusive for one mode or the
other.

\ifhmode Test whether the current mode is (possibly restricted) horizontal
mode.

\ifvmode Test whether the current mode is (possibly internal) vertical mode.

\ifinner Test whether the current mode is an internal mode.

\vadjust Specify vertical material for the enclosing vertical list while in
horizontal mode.

\showlists Write to the log file the contents of the partial lists currently
being built in all modes.

6.1 Horizontal and vertical mode

When not typesetting mathematics, TEX is in horizontal or vertical mode,
building horizontal or vertical lists respectively. Horizontal mode is typically
used to make lines of text; vertical mode is typically used to stack the lines of
a paragraph on top of each other. Note that these modes are different from the
internal states of TEX’s input processor (see page 29).

74

6.1 Horizontal and vertical mode 75

6.1.1 Horizontal mode

The main activity in horizontal mode is building lines of text. Text on the
page and text in a \vbox or \vtop is built in horizontal mode (this might be
called ‘paragraph mode’); if the text is in an \hbox there is only one line of text,
and the corresponding mode is the restricted horizontal mode.

In horizontal mode all material is added to a horizontal list. If this list
is built in unrestricted horizontal mode, it will later be broken into lines and
added to the surrounding vertical list.

Each element of a horizontal list is one of the following:

• a box (a character, ligature, \vrule, or a ⟨box⟩),

• a discretionary break,

• a whatsit (see Chapter 30),

• vertical material enclosed in \mark, \vadjust, or \insert,

• glue or leaders, a kern, a penalty, or a math-on/off item.

The items in the last point are all discardable. Discardable items are called that,
because they disappear in a break. Breaking of horizontal lists is discussed in
Chapter 19.

6.1.2 Vertical mode

Vertical mode can be used to stack items on top of one another. Most of the
time, these items are boxes containing the lines of paragraphs.

Stacking material can take place inside a vertical box, but the items that
are stacked can also appear by themselves on the page. In the latter case TEX
is in vertical mode; in the former case, inside a vertical box, TEX operates in
internal vertical mode.

In vertical mode all material is added to a vertical list. If this list is built
in external vertical mode, it will later be broken when pages are formed.

Each element of a vertical list is one of the following:

• a box (a horizontal or vertical box or an \hrule),

• a whatsit,

• a mark,

• glue or leaders, a kern, or a penalty.

The items in the last point are all discardable. Breaking of vertical lists is
discussed in Chapter 27.

There are a few exceptional conditions at the beginning of a vertical list:

76 第 6 章 Horizontal and Vertical Mode

the value of \prevdepth is set to -1000pt. Furthermore, no \parskip glue is
added at the top of an internal vertical list; at the top of the main vertical list
(the top of the ‘current page’) no glue or other discardable items are added, and
\topskip glue is added when the first box is placed on this list (see Chapters 26
and 27).

6.2 Horizontal and vertical commands

Some commands are so intrinsically horizontal or vertical in nature that
they force TEX to go into that mode, if possible. A command that forces TEX
into horizontal mode is called a ⟨horizontal command⟩; similarly a command
that forces TEX into vertical mode is called a ⟨vertical command⟩.

However, not all transitions are possible: TEX can switch from both verti-
cal modes to (unrestricted) horizontal mode and back through horizontal and
vertical commands, but no transitions to or from restricted horizontal mode are
possible (other than by enclosing horizontal boxes in vertical boxes or the other
way around). A vertical command in restricted horizontal mode thus gives an
error; the \par command in restricted horizontal mode has no effect.

The horizontal commands are the following:

• any ⟨letter⟩, ⟨otherchar⟩, \char, a control sequence defined by \chardef, or
\noboundary;

• \accent, \discretionary, the discretionary hyphen \- and control space \ ;

• \unhbox and \unhcopy;

• \vrule and the ⟨horizontal skip⟩ commands \hskip, \hfil, \hfill, \hss,
and \hfilneg;

• \valign;

• math shift ($).

The vertical commands are the following:

• \unvbox and \unvcopy;

• \hrule and the ⟨vertical skip⟩ commands \vskip, \vfil, \vfill, \vss, and
\vfilneg;

• \halign;

• \end and \dump.

Note that the vertical commands do not include \par; nor are \indent and
\noindent horizontal commands.

The connection between boxes and modes is explored below; see Chapter 9

6.3 The internal modes 77

for more on the connection between rules and modes.

6.3 The internal modes

The restricted horizontal mode and internal vertical mode are those vari-
ants of horizontal mode and vertical mode that hold inside an \hbox and \vbox
(or \vtop or \vcenter) respectively. However, restricted horizontal mode is
rather more restricted in nature than internal vertical mode. The third internal
mode is non-display math mode (see Chapter 23).

6.3.1 Restricted horizontal mode

The main difference between restricted horizontal mode, the mode in an
\hbox, and unrestricted horizontal mode, the mode in which paragraphs in ver-
tical boxes and on the page are built, is that you cannot break out of restricted
horizontal mode: \par does nothing in this mode. Furthermore, a ⟨vertical com-
mand⟩ in restricted horizontal mode gives an error. In unrestricted horizontal
mode it would cause a \par token to be inserted and vertical mode to be entered
(see also Chapter 17).

6.3.2 Internal vertical mode

Internal vertical mode, the vertical mode inside a \vbox, is a lot like exter-
nal vertical mode, the mode in which pages are built. A ⟨horizontal command⟩
in internal vertical mode, for instance, is perfectly valid: TEX then starts build-
ing a paragraph in unrestricted horizontal mode.

One difference is that the commands \unskip and \unkern have no effect
in external vertical mode, and \lastbox is always empty in external vertical
mode. See further pages 59 and 102.

The entries of alignments (see Chapter 25) are processed in internal modes:
restricted horizontal mode for the entries of an \halign, and internal vertical
mode for the entries of a \valign. The material in \vadjust and \insert items
is also processed in internal vertical mode; furthermore, TEX enters this mode
when processing the \output token list.

The commands \end and \dump (the latter exists only in IniTEX) are not
allowed in internal vertical mode; furthermore, \dump is not allowed inside a
group (see Chapter 33).

78 第 6 章 Horizontal and Vertical Mode

6.4 Boxes and modes

There are horizontal and vertical boxes, and there is horizontal and vertical
mode. Not surprisingly, there is a connection between the boxes and the modes.
One can ask about this connection in two ways.

6.4.1 What box do you use in what mode?

This is the wrong question. Both horizontal and vertical boxes can be used
in both horizontal and vertical mode. Their placement is determined by the
prevailing mode at that moment.

6.4.2 What mode holds in what box?

This is the right question. When an \hbox starts, TEX is in restricted hori-
zontal mode. Thus everything in a horizontal box is lined up horizontally.

When a \vbox is started, TEX is in internal vertical mode. Boxes of both
kinds and other items are then stacked on top of each other.

6.4.3 Mode-dependent behaviour of boxes

Any ⟨box⟩ (see Chapter 5 for the full definition) can be used in horizon-
tal, vertical, and math mode. Unboxing commands, however, are specific for
horizontal or vertical mode. Both \unhbox and \unhcopy are ⟨horizontal com-
mand⟩s, so they can make TEX switch from vertical to horizontal mode; both
\unvbox and \unvcopy are ⟨vertical command⟩s, so they can make TEX switch
from horizontal to vertical mode.

In horizontal mode the \spacefactor is set to 1000 after a box has been
placed. In vertical mode the \prevdepth is set to the depth of the box placed.
Neither statement holds for unboxing commands: after an \unhbox or \unhcopy
the spacefactor is not altered, and after \unvbox or \unvcopy the \prevdepth
remains unchanged. After all, these commands do not add a box, but a piece of
a (horizontal or vertical) list.

The operations \raise and \lower can only be applied to a box in horizon-
tal mode; similarly, \moveleft and \moveright can only be applied in vertical
mode.

6.5 Modes and glue 79

6.5 Modes and glue

Both in horizontal and vertical mode TEX can insert glue items the size of
which is determined by the preceding object in the list.

For horizontal mode the amount of glue that is inserted for a space token
depends on the \spacefactor of the previous object in the list. This is treated
in Chapter 20.

In vertical mode TEX inserts glue to keep boxes at a certain distance from
each other. This glue is influenced by the height of the current item and the
depth of the previous one. The depth of items is recorded in the \prevdepth
parameter (see Chapter 15).

The two quantities \prevdepth and \spacefactor use the same internal
register of TEX. Thus the \prevdepth can be used or asked only in vertical
mode, and the \spacefactor only in horizontal mode.

6.6 Migrating material

The three control sequences \insert, \mark, and \vadjust can be given in
a paragraph (the first two can also occur in vertical mode) to specify migrating
material: material that will wind up on the surrounding vertical list rather
than on the current list. Note that this need not be the main vertical list: it can
be a vertical box containing a paragraph of text. In this case a \mark or \insert
command will not reach the page breaking algorithm.

When several migrating items are specified in a certain line of text, their
left-to-right order is preserved when they are placed on the surrounding vertical
list. These items are placed directly after the horizontal box containing the line
of text in which they were specified: they come before any penalty or glue items
that are automatically inserted (see page 192).

6.6.1 \vadjust

The command

\vadjust⟨filler⟩{⟨vertical mode material⟩}

is only allowed in horizontal and math modes (but it is not a ⟨horizontal com-
mand⟩). Vertical mode material specified by \vadjust is moved from the hor-
izontal list in which the command is given to the surrounding vertical list, di-
rectly after the box in which it occurred.

80 第 6 章 Horizontal and Vertical Mode

In the current line a \vadjust item was placed to put the bullet in the•
margin.

Any vertical material in a \vadjust item is processed in internal vertical
mode, even though it will wind up on the main vertical list. For instance, the
\ifinner test is true in a \vadjust, and at the start of the vertical material
\prevdepth=-1000pt.

6.7 Testing modes

The three conditionals \ifhmode, \ifvmode, and \ifinner can distinguish
between the four modes of TEX that are not math modes. The \ifinner test
is true if TEX is in restricted horizontal mode or internal vertical mode (or in
non-display math mode). Exceptional condition: during a \write TEX is in a ‘no
mode’ state. The tests \ifhmode, \ifvmode, and \ifmmode are then all false.

Inspection of all current lists, including the ‘recent contributions’ (see Chap-
ter 27), is possible through the command \showlists. This command writes to
the log file the contents of all lists that are being built at the moment the com-
mand is given.

Consider the example
a\hfil\break b\par
c\hfill\break d
\hbox{e\vbox{f\showlists

Here the first paragraph has been broken into two lines, and these have been
added to the current page. The second paragraph has not been concluded or
broken into lines.

The log file shows the following. TEX was busy building a paragraph (start-
ing with an indentation box 20pt wide):

horizontal mode entered at line 3
\hbox(0.0+0.0)x20.0
\tenrm f
spacefactor 1000

This paragraph was inside a vertical box:
internal vertical mode entered at line 3
prevdepth ignored

The vertical box was in a horizontal box,
restricted horizontal mode entered at line 3
\tenrm e
spacefactor 1000

which was part of an as-yet unfinished paragraph:

6.7 Testing modes 81

horizontal mode entered at line 2
\hbox(0.0+0.0)x20.0
\tenrm c
\glue 0.0 plus 1.0fill
\penalty -10000
\tenrm d
etc.
spacefactor 1000

Note how the infinite glue and the \break penalty are still part of the horizontal
list.

Finally, the first paragraph has been broken into lines and added to the
current page:

vertical mode entered at line 0
current page:
\glue(\topskip) 5.69446
\hbox(4.30554+0.0)x469.75499, glue set 444.75497fil
.\hbox(0.0+0.0)x20.0
.\tenrm a
.\glue 0.0 plus 1.0fil
.\penalty -10000
.\glue(\rightskip) 0.0
\penalty 300
\glue(\baselineskip) 5.05556
\hbox(6.94444+0.0)x469.75499, glue set 464.19943fil
.\tenrm b
.\penalty 10000
.\glue(\parfillskip) 0.0 plus 1.0fil
.\glue(\rightskip) 0.0
etc.
total height 22.0 plus 1.0
goal height 643.20255
prevdepth 0.0

第 7 章 Numbers

In this chapter integers and their denotations will be treated, the conver-
sions that are possible either way, allocation and use of \count registers, and
arithmetic with integers.

\number Convert a ⟨number⟩ to decimal representation.

\romannumeral Convert a positive ⟨number⟩ to lowercase roman
representation.

\ifnum Test relations between numbers.

\ifodd Test whether a number is odd.

\ifcase Enumerated case statement.

\count Prefix for count registers.

\countdef Define a control sequence to be a synonym for a \count register.

\newcount Allocate an unused \count register.

\advance Arithmetic command to add to or subtract from a ⟨numeric
variable⟩.

\multiply Arithmetic command to multiply a ⟨numeric variable⟩.

\divide Arithmetic command to divide a ⟨numeric variable⟩.

7.1 Numbers and ⟨number⟩s
An important part of the grammar of TEX is the rigorous definition of a

⟨number⟩, the syntactic entity that TEX expects when semantically an integer
is expected. This definition will take the largest part of this chapter. Towards
the end, \count registers, arithmetic, and tests for numbers are discussed.

For clarity of discussion a distinction will be made here between integers
and numbers, but note that a ⟨number⟩ can be both an ‘integer’ and a ‘number’.
‘Integer’ will be taken to denote a mathematical number: a quantity that can

82

7.2 Integers 83

be added or multiplied. ‘Number’ will be taken to refer to the printed represen-
tation of an integer: a string of digits, in other words.

7.2 Integers

Quite a few different sorts of objects can function as integers in TEX. In
this section they will all be treated, accompanied by the relevant lines from the
grammar of TEX.

First of all, an integer can be positive or negative:

⟨number⟩ −→ ⟨optional signs⟩⟨unsigned number⟩
⟨optional signs⟩ −→ ⟨optional spaces⟩
| ⟨optional signs⟩⟨plus or minus⟩⟨optional spaces⟩

A first possibility for an unsigned integer is a string of digits in decimal,
octal, or hexadecimal notation. Together with the alphabetic constants these
will be named here ⟨integer denotation⟩. Another possibility for an integer is an
internal integer quantity, an ⟨internal integer⟩; together with the denotations
these form the ⟨normal integer⟩s. Lastly an integer can be a ⟨coerced integer⟩:
an internal ⟨dimen⟩ or ⟨glue⟩ quantity that is converted to an integer value.

⟨unsigned number⟩ −→ ⟨normal integer⟩ | ⟨coerced integer⟩
⟨normal integer⟩ −→ ⟨integer denotation⟩ | ⟨internal integer⟩
⟨coerced integer⟩ −→ ⟨internal dimen⟩ | ⟨internal glue⟩

All of these possibilities will be treated in sequence.

7.2.1 Denotations: integers

Anything that looks like a number can be used as a ⟨number⟩: thus 42 is a
number. However, bases other than decimal can also be used:

'123

is the octal notation for 1× 82 + 2× 81 + 3× 80 = 83, and
"123

is the hexadecimal notation for 1× 162 + 2× 161 + 3× 160 = 291.

⟨integer denotation⟩ −→ ⟨integer constant⟩⟨one optional space⟩
| '⟨octal constant⟩⟨one optional space⟩
| "⟨hexadecimal constant⟩⟨one optional space⟩

The octal digits are 0–7; a digit 8 or 9 following an octal denotation is not part
of the number: after

\count0='078

84 第 7 章 Numbers

the \count0 will have the value 7, and the digit 8 is typeset.
The hexadecimal digits are 0–9, A–F, where the A–F can have category code

11 or 12. The latter has a somewhat far-fetched justification: the characters re-
sulting from a \string operation have category code 12. Lowercase a–f are not
hexadecimal digits, although (in TEX3) they are used for hexadecimal notation
in the ‘circumflex method’ for accessing all character codes (see Chapter 3).

7.2.2 Denotations: characters

A character token is a pair consisting of a character code, which is a number
in the range 0–255, and a category code. Both of these codes are accessible, and
can be used as a ⟨number⟩.

The character code of a character token, or of a single letter control se-
quence, is accessible through the left quote command: both `a and `\a denote
the character code of a, which can be used as an integer.

⟨integer denotation⟩ −→ `⟨character token⟩⟨one optional space⟩

In order to emphasize that accessing the character code is in a sense using
a denotation, the syntax of TEX allows an optional space after such a ‘character
constant’. The left quote must have category 12.

7.2.3 Internal integers

The class of ⟨internal integers⟩ can be split into five parts. The ⟨codename⟩s
and ⟨special integer⟩s will be treated separately below; furthermore, there are
the following.

• The contents of \count registers; either explicitly used by writing for in-
stance \count23, or by referring to such a register by means of a control
sequence that was defined by \countdef: after

\countdef\MyCount=23

\MyCount is called a ⟨countdef token⟩, and it is fully equivalent to \count23.

• All parameters of TEX that hold integer values; this includes obvious ones
such as \linepenalty, but also parameters such as \hyphenchar⟨font⟩ and
\parshape (if a paragraph shape has been defined for n lines, using \parshape
in the context of a ⟨number⟩ will yield this value of n).

• Tokens defined by \chardef or \mathchardef. After
\chardef\foo=74

the control sequence \foo can be used on its own to mean \char74, but in
a context where a ⟨number⟩ is wanted it can be used to denote 74:

7.2 Integers 85

\count\foo

is equivalent to \count74. This fact is exploited in the allocation routines
for registers (see Chapter 31).
A control sequence thus defined by \chardef is called a ⟨chardef token⟩; if
it is defined by \mathchardef it is called a ⟨mathchardef token⟩.

Here is the full list:

⟨internal integer⟩ −→ ⟨integer parameter⟩
| ⟨special integer⟩ | \lastpenalty
| ⟨countdef token⟩ | \count⟨8-bit number⟩
| ⟨chardef token⟩ | ⟨mathchardef token⟩
| ⟨codename⟩⟨8-bit number⟩
| \hyphenchar⟨font⟩ | \skewchar⟨font⟩ | \parshape
| \inputlineno | \badness
⟨integer parameter⟩ −→ | \adjdemerits | \binoppenalty
| \brokenpenalty | \clubpenalty | \day
| \defaulthyphenchar | \defaultskewchar
| \delimiterfactor | \displaywidowpenalty
| \doublehyphendemerits | \endlinechar | \escapechar
| \exhypenpenalty | \fam | \finalhyphendemerits
| \floatingpenalty | \globaldefs | \hangafter
| \hbadness | \hyphenpenalty | \interlinepenalty
| \linepenalty | \looseness | \mag
| \maxdeadcycles | \month
| \newlinechar | \outputpenalty | \pausing
| \postdisplaypenalty | \predisplaypenalty
| \pretolerance | \relpenalty | \showboxbreadth
| \showboxdepth | \time | \tolerance
| \tracingcommands | \tracinglostchars | \tracingmacros
| \tracingonline | \tracingoutput | \tracingpages
| \tracingparagraphs | \tracingrestores | \tracingstats
| \uchyph | \vbadness | \widowpenalty | \year

Any internal integer can function as an ⟨internal unit⟩, which – preceded
by ⟨optional spaces⟩ – can serve as a ⟨unit of measure⟩. Examples of this are
given in Chapter 8.

86 第 7 章 Numbers

7.2.4 Internal integers: other codes of a character

The \catcode command (which was described in Chapter 2) is a ⟨codename⟩,
and like the other code names it can be used as an integer.

⟨codename⟩ −→ \catcode | \mathcode | \uccode | \lccode
| \sfcode | \delcode

A ⟨codename⟩ has to be followed by an ⟨8-bit number⟩.
Uppercase and lowercase codes were treated in Chapter 3; the \sfcode is

treated in Chapter 20; the \mathcode and \delcode are treated in Chapter 21.

7.2.5 ⟨special integer⟩

One of the subclasses of the internal integers is that of the special integers.

⟨special integer⟩ −→ \spacefactor | \prevgraf
| \deadcycles | \insertpenalties

An assignment to any of these is called an ⟨intimate assignment⟩, and is auto-
matically global (see Chapter 10).

7.2.6 Other internal quantities: coersion to integer

TEX provides a conversion between dimensions and integers: if an integer
is expected, a ⟨dimen⟩ or ⟨glue⟩ used in that context is converted by taking its
(natural) size in scaled points. However, only ⟨internal dimen⟩s and ⟨internal
glue⟩ can be used this way: no dimension or glue denotations can be coerced to
integers.

7.2.7 Trailing spaces

The syntax of TEX defines integer denotations (decimal, octal, and hexadec-
imal) and ‘back-quoted’ character tokens to be followed by ⟨one optional space⟩.
This means that TEX reads the token after the number, absorbing it if it was a
space token, and backing up if it was not.

Because TEX’s input processor goes into the state ‘skipping spaces’ after it
has seen one space token, this scanning behaviour implies that integer denota-
tions can be followed by arbitrarily many space characters in the input. Also, a
line end is admissible. However, only one space token is allowed.

7.3 Numbers 87

7.3 Numbers
TEX can perform an implicit number conversion from a string of digits to

an integer. Conversion from a representation in decimal, octal, or hexadecimal
notation was treated above. The conversion the other way, from an ⟨internal
integer⟩ to a printed representation, has to be performed explicitly. TEX pro-
vides two conversion routines, \number, to decimal, and \romannumeral to ro-
man numerals. The command \number is equivalent to \the when followed by
an internal integer. These commands are performed in the expansion processor
of TEX, that is, they are expanded whenever expansion has not been inhibited.

Both commands yield a string of tokens with category code 12; their argu-
ment is a ⟨number⟩. Thus \romannumeral51, \romannumeral\year, and \number\linepenalty
are valid, and so is \number13. Applying \number to a denotation has some uses:
it removes leading zeros and superfluous plus and minus signs.

A roman numeral is a string of lowercase ‘roman digits’, which are charac-
ters of category code 12. The sequence

\uppercase\expandafter{\romannumeral ...}

gives uppercase roman numerals. This works because TEX expands tokens in
order to find the opening brace of the argument of \uppercase. If \romannumeral
is applied to a negative number, the result is simply empty.

7.4 Integer registers
Integers can be stored in \count registers:

\count⟨8-bit number⟩

is an ⟨integer variable⟩ and an ⟨internal integer⟩. As an integer variable it can
be used in a ⟨variable assignment⟩:

⟨variable assignment⟩ −→ ⟨integer variable⟩⟨equals⟩⟨number⟩ |…

As an internal integer it can be used as a ⟨number⟩:

⟨number⟩ → ⟨optional signs⟩⟨internal integer⟩ |…

Synonyms for \count registers can be introduced by the \countdef com-
mand in a ⟨shorthand definition⟩:

\countdef⟨control sequence⟩⟨equals⟩⟨8-bit number⟩

A control sequence defined this way is called a ⟨countdef token⟩, and it serves
as an ⟨internal integer⟩.

The plain TEX macro \newcount (which is declared \outer) uses the \countdef
command to allocate an unused \count register. Counters 0–9 are scratch reg-

88 第 7 章 Numbers

isters, like all registers with numbers 0–9. However, counters 0–9 are used for
page identification in the dvi file (see Chapter 33), so they should be used as
scratch registers only inside a group. Counters 10–22 are used for plain TEX’s
bookkeeping of allocation of registers. Counter 255 is also scratch.

7.5 Arithmetic

The user can perform some arithmetic in TEX, and TEX also performs arith-
metic internally. User arithmetic is concerned only with integers; the internal
arithmetic is mostly on fixed-point quantities, and only in the case of glue set-
ting on floating-point numbers.

7.5.1 Arithmetic statements

TEX allows the user to perform some arithmetic on integers. The statement

\advance⟨integer variable⟩⟨optional by⟩⟨number⟩

adds the value of the ⟨number⟩ – which may be negative – to the ⟨integer vari-
able⟩. Similarly,

\multiply⟨integer variable⟩⟨optional by⟩⟨number⟩

multiplies the value of the ⟨integer variable⟩, and

\divide⟨integer variable⟩⟨optional by⟩⟨number⟩

divides an ⟨integer variable⟩.
Multiplication and division are also available for any so-called ⟨numeric

variable⟩: their most general form is

\multiply⟨numeric variable⟩⟨optional by⟩⟨number⟩

where

⟨numeric variable⟩ −→ ⟨integer variable⟩ | ⟨dimen variable⟩
| ⟨glue variable⟩ | ⟨muglue variable⟩

The result of an arithmetic operation should not exceed 230 in absolute
value.

Division of integers yields an integer; that is, the remainder is discarded.
This raises the question of how rounding is performed when either operand is
negative. In such cases TEX performs the division with the absolute values of
the operands, and takes the negative of the result if exactly one operand was
negative.

7.6 Number testing 89

7.5.2 Floating-point arithmetic

Internally some floating-point arithmetic is performed, namely in the cal-
culation of glue set ratios. However, machine-dependent aspects of rounding
cannot influence the decision process of TEX, so machine independence of TEX
is guaranteed in this respect (sufficient accuracy of rounding is enforced by the
Trip test of [21]).

7.5.3 Fixed-point arithmetic

All fractional arithmetic in TEX is performed in fixed-point arithmetic of
‘scaled integers’: multiples of 2−16. This ensures the machine independence of
TEX. Printed representations of scaled integers are rounded to 5 decimal digits.

In ordinary 32-bit implementations of TEX the largest integers are 231−1 in
absolute size. The user is not allowed to specify dimensions larger in absolute
size than 230 − 1: two such dimensions can be added or subtracted without
overflow on a 32-bit system.

7.6 Number testing
The most general test for integers in TEX is

\ifnum⟨number1⟩⟨relation⟩⟨number2⟩

where ⟨relation⟩ is a <, >, or = character, all of category 12.
Distinguishing between odd and even numbers is done by

\ifodd⟨number⟩

A numeric case statement is provided by

\ifcase⟨number⟩⟨case0⟩\or...\or⟨casen⟩\else⟨other cases⟩\fi

where the \else-part is optional. The tokens for ⟨casei⟩ are processed if the
number turns out to be i; other cases are skipped, similarly to what ordinarily
happens in conditionals (see Chapter 13).

7.7 Remarks

7.7.1 Character constants

In formats and macro collections numeric constants are often needed. There
are several ways to implement these in TEX.

Firstly,

90 第 7 章 Numbers

\newcount\SomeConstant \SomeConstant=42

This is wasteful, as it uses up a \count register.
Secondly,
\def\SomeConstant{42}

Better but accident prone: TEX has to expand to find the number – which in
itself is a slight overhead – and may inadvertently expand some tokens that
should have been left alone.

Thirdly,
\chardef\SomeConstant=42

This one is fine. A ⟨chardef token⟩ has the same status as a \count register:
both are ⟨internal integer⟩s. Therefore a number defined this way can be used
everywhere that a \count register is feasible. For large numbers the \chardef
can be replaced by \mathchardef, which runs to "7FFF = 32 767. Note that a
⟨mathchardef token⟩ can usually only appear in math mode, but in the context
of a number it can appear anywhere.

7.7.2 Expanding too far / how far

It is a common mistake to write pieces of TEX code where TEX will inadver-
tently expand something because it is trying to compose a number. For exam-
ple:

\def\par{\endgraf\penalty200}
...\par \number\pageno

Here the page number will be absorbed into the value of the penalty.
Now consider
\newcount\midpenalty \midpenalty=200
\def\par{\endgraf\penalty\midpenalty}
...\par \number\pageno

Here the page number is not scooped up by mistake: TEX is trying to locate
a ⟨number⟩ after the \penalty, and it finds a ⟨countdef token⟩. This is not
converted to a representation in digits, so there is never any danger of the page
number being touched.

It is possible to convert a ⟨countdef token⟩ first to a representation in digits
before assigning it:

\penalty\number\midpenalty

and this brings back again all previous problems of expansion.

第 8 章 Dimensions and Glue

In TEX vertical and horizontal white space can have a possibility to adjust
itself through ‘stretching’ or ‘shrinking’. An adjustable white space is called
glue. This chapter treats all technical concepts related to dimensions and glue,
and it explains how the badness of stretching or shrinking a certain amount is
calculated.

\dimen Dimension register prefix.

\dimendef Define a control sequence to be a synonym for a \dimen register.

\newdimen Allocate an unused dimen register.

\skip Skip register prefix.

\skipdef Define a control sequence to be a synonym for a \skip register.

\newskip Allocate an unused skip register.

\ifdim Compare two dimensions.

\hskip Insert in horizontal mode a glue item.

\hfil Equivalent to \hskip 0cm plus 1fil.

\hfilneg Equivalent to \hskip 0cm minus 1fil.

\hfill Equivalent to \hskip 0cm plus 1fill.

\hss Equivalent to \hskip 0cm plus 1fil minus 1fil.

\vskip Insert in vertical mode a glue item.

\vfil Equivalent to \vskip 0cm plus 1fil.

\vfill Equivalent to \vskip 0cm plus 1fill.

\vfilneg Equivalent to \vskip 0cm minus 1fil.

\vss Equivalent to \vskip 0cm plus 1fil minus 1fil.

\kern Add a kern item to the current horizontal or vertical list.

\lastkern If the last item on the current list was a kern, the size of it.

\lastskip If the last item on the current list was a glue, the size of it.

91

92 第 8 章 Dimensions and Glue

\unkern If the last item of the current list was a kern, remove it.

\unskip If the last item of the current list was a glue, remove it.

\removelastskip Macro to append the negative of the \lastskip.

\advance Arithmetic command to add to or subtract from a ⟨numeric
variable⟩.

\multiply Arithmetic command to multiply a ⟨numeric variable⟩.

\divide Arithmetic command to divide a ⟨numeric variable⟩.

8.1 Definition of ⟨glue⟩ and ⟨dimen⟩

This section gives the syntax of the quantities ⟨dimen⟩ and ⟨glue⟩. In the
next section the practical aspects of glue are treated.

Unfortunately the terminology for glue is slightly confusing. The syntac-
tical quantity ⟨glue⟩ is a dimension (a distance) with possibly a stretch and/or
shrink component. In order to add a glob of ‘glue’ (a white space) to a list one
has to let a ⟨glue⟩ be preceded by commands such as \vskip.

8.1.1 Definition of dimensions

A ⟨dimen⟩ is what TEX expects to see when it needs to indicate a dimension;
it can be positive or negative.

⟨dimen⟩ −→ ⟨optional signs⟩⟨unsigned dimen⟩

The unsigned part of a ⟨dimen⟩ can be

⟨unsigned dimen⟩ −→ ⟨normal dimen⟩ | ⟨coerced dimen⟩
⟨normal dimen⟩ −→ ⟨internal dimen⟩ | ⟨factor⟩⟨unit of measure⟩
⟨coerced dimen⟩ −→ ⟨internal glue⟩

That is, we have the following three cases:

• an ⟨internal dimen⟩; this is any register or parameter of TEX that has a
⟨dimen⟩ value:

⟨internal dimen⟩ −→ ⟨dimen parameter⟩
| ⟨special dimen⟩ | \lastkern
| ⟨dimendef token⟩ | \dimen⟨8-bit number⟩
| \fontdimen⟨number⟩⟨font⟩
| ⟨box dimension⟩⟨8-bit number⟩
⟨dimen parameter⟩ −→ \boxmaxdepth
| \delimitershortfall | \displayindent

8.1 Definition of ⟨glue⟩ and ⟨dimen⟩ 93

| \displaywidth | \hangindent
| \hfuzz | \hoffset | \hsize
| \lineskiplimit | \mathsurround
| \maxdepth | \nulldelimiterspace
| \overfullrule | \parindent
| \predisplaysize | \scriptspace
| \splitmaxdepth | \vfuzz
| \voffset | \vsize

• a dimension denotation, consisting of ⟨factor⟩⟨unit of measure⟩, for example
0.7\vsize; or

• an ⟨internal glue⟩ (see below) coerced to a dimension by omitting the stretch
and shrink components, for example \parfillskip.

A dimension denotation is a somewhat complicated entity:

• a ⟨factor⟩ is an integer denotation, a decimal constant denotation (a number
with an integral and a fractional part), or an ⟨internal integer⟩

⟨factor⟩ −→ ⟨normal integer⟩ | ⟨decimal constant⟩
⟨normal integer⟩ −→ ⟨integer denotation⟩
| ⟨internal integer⟩
⟨decimal constant⟩ −→ .12 | ,12
| ⟨digit⟩⟨decimal constant⟩
| ⟨decimal constant⟩⟨digit⟩

An internal integer is a parameter that is ‘really’ an integer (for instance,
\count0), and not coerced from a dimension or glue. See Chapter 7 for the
definition of various kinds of integers.

• a ⟨unit of measure⟩ can be a ⟨physical unit⟩, that is, an ordinary unit such
as cm (possibly preceded by true), an internal unit such as em, but also an
⟨internal integer⟩ (by conversion to scaled points), an ⟨internal dimen⟩, or
an ⟨internal glue⟩.

⟨unit of measure⟩ −→ ⟨optional spaces⟩⟨internal unit⟩
| ⟨optional true⟩⟨physical unit⟩⟨one optional space⟩
⟨internal unit⟩ −→ em⟨one optional space⟩
| ex⟨one optional space⟩ | ⟨internal integer⟩
| ⟨internal dimen⟩ | ⟨internal glue⟩

Some ⟨dimen⟩s are called ⟨special dimen⟩s:

⟨special dimen⟩ −→ \prevdepth
| \pagegoal | \pagetotal | \pagestretch
| \pagefilstretch | \pagefillstretch

94 第 8 章 Dimensions and Glue

| \pagefilllstretch | \pageshrink | \pagedepth

An assignment to any of these is called an ⟨intimate assignment⟩, and it is
automatically global (see Chapter 10). The meaning of these dimensions is ex-
plained in Chapter 27, with the exception of \prevdepth which is treated in
Chapter 15.

8.1.2 Definition of glue

A ⟨glue⟩ is either some form of glue variable, or a glue denotation with
explicitly indicated stretch and shrink. Specifically,

⟨glue⟩ −→ ⟨optional signs⟩⟨internal glue⟩ | ⟨dimen⟩⟨stretch⟩⟨shrink⟩
⟨internal glue⟩ −→ ⟨glue parameter⟩ | \lastskip
| ⟨skipdef token⟩ | \skip⟨8-bit number⟩
⟨glue parameter⟩ −→ \abovedisplayshortskip
| \abovedisplayskip | \baselineskip
| \belowdisplayshortskip | \belowdisplayskip
| \leftskip | \lineskip | \parfillskip | \parskip
| \rightskip | \spaceskip | \splittopskip | \tabskip
| \topskip | \xspaceskip

The stretch and shrink components in a glue denotation are optional, but when
both are specified they have to be given in sequence; they are defined as

⟨stretch⟩ −→ plus ⟨dimen⟩ | plus⟨fil dimen⟩ | ⟨optional spaces⟩
⟨shrink⟩ −→ minus ⟨dimen⟩ | minus⟨fil dimen⟩ | ⟨optional spaces⟩
⟨fil dimen⟩ −→ ⟨optional signs⟩⟨factor⟩⟨fil unit⟩⟨optional spaces⟩
⟨fil unit⟩ −→ | fil | fill | filll

The actual definition of ⟨fil unit⟩ is recursive (see Chapter 36), but these
are the only valid possibilities.

8.1.3 Conversion of ⟨glue⟩ to ⟨dimen⟩

The grammar rule

⟨dimen⟩ −→ ⟨factor⟩⟨unit of measure⟩

has some noteworthy consequences, caused by the fact that a ⟨unit of measure⟩
need not look like a ‘unit of measure’ at all (see the list above).

For instance, from this definition we conclude that the statement
\dimen0=\lastpenalty\lastpenalty

is syntactically correct because \lastpenalty can function both as an integer
and as ⟨unit of measure⟩ by taking its value in scaled points. After \penalty8

8.1 Definition of ⟨glue⟩ and ⟨dimen⟩ 95

the \dimen0 thus defined will have a size of 64sp.
More importantly, consider the case where the ⟨unit of measure⟩ is an

⟨internal glue⟩, that is, any sort of glue parameter. Prefixing such a glue with
a number (the ⟨factor⟩) makes it a valid ⟨dimen⟩ specification. Thus

\skip0=\skip1

is very different from
\skip0=1\skip1

The first statement makes \skip0 equal to \skip1, the second converts the
\skip1 to a ⟨dimen⟩ before assigning it. In other words, the \skip0 defined
by the second statement has no stretch or shrink.

8.1.4 Registers for \dimen and \skip

TEX has registers for storing ⟨dimen⟩ and ⟨glue⟩ values: the \dimen and
\skip registers respectively. These are accessible by the expressions

\dimen⟨number⟩

and

\skip⟨number⟩

As with all registers of TEX, these registers are numbered 0–255.
Synonyms for registers can be made with the \dimendef and \skipdef com-

mands. Their syntax is

\dimendef⟨control sequence⟩⟨equals⟩⟨8-bit number⟩

and

\skipdef⟨control sequence⟩⟨equals⟩⟨8-bit number⟩

For example, after \skipdef\foo=13 using \foo is equivalent to using \skip13.
Macros \newdimen and \newskip exist in plain TEXfor allocating an unused

dimen or skip register. These macros are defined to be \outer in the plain
format.

8.1.5 Arithmetic: addition

As for integer variables, arithmetic operations exist for arithmetic on glue:
dimen, glue, and muglue (mathematical glue; see page 221) variables.

The expressions

\advance⟨dimen variable⟩⟨optional by⟩⟨dimen⟩
\advance⟨glue variable⟩⟨optional by⟩⟨glue⟩
\advance⟨muglue variable⟩⟨optional by⟩⟨muglue⟩

96 第 8 章 Dimensions and Glue

add to the size of a dimen, glue, or muglue.
Advancing a ⟨glue variable⟩ by ⟨glue⟩ is done by adding the natural sizes,

and the stretch and shrink components. Because TEX converts between ⟨glue⟩
and ⟨dimen⟩, it is possible to write for instance

\advance\skip1 by \dimen1

or
\advance\dimen1 by \skip1

In the first case \dimen1 is coerced to ⟨glue⟩ without stretch or shrink; in the
second case the \skip1 is coerced to a ⟨dimen⟩ by taking its natural size.

8.1.6 Arithmetic: multiplication and division

Multiplication and division operations exist for glue and dimensions. One
may for instance write

\multiply\skip1 by 2

which multiplies the natural size, and the stretch and shrink components of
\skip1 by 2.

The second operand of a \multiply or \divide operation can only be a
⟨number⟩, that is, an integer. Introducing the notion of ⟨numeric variable⟩:

⟨numeric variable⟩ −→ ⟨integer variable⟩ | ⟨dimen variable⟩
| ⟨glue variable⟩ | ⟨muglue variable⟩

these operations take the form

\multiply⟨numeric variable⟩⟨optional by⟩⟨number⟩

and

\divide⟨numeric variable⟩⟨optional by⟩⟨number⟩

Glue and dimen can be multiplied by non-integer quantities:
\skip1=2.5\skip2
\dimen1=.78\dimen2

However, in the first line the \skip2 is first coerced to a ⟨dimen⟩ value by omit-
ting its stretch and shrink.

8.2 More about dimensions

8.2.1 Units of measurement

In TEX dimensions can be indicated in the following units of measurement:

centimetre denoted cm or

8.2 More about dimensions 97

millimetre denoted mm; these are SI units (Système International d’Unités, the
international system of standard units of measurements).

inch in; more common in the Anglo-American world. One inch is 2.54 cen-
timetres.

pica denoted pc; one pica is 12 points.

point denoted pt; the common system for Anglo-American printers. One inch
is 72.27 points.

didot point denoted dd; the common system for continental European print-
ers. Furthermore, 1157 didot points are 1238 points.

cicero denoted cc; one cicero is 12 didot points.

big point denoted bp; one inch is 72 big points.

scaled point denoted sp; this is the smallest unit in TEX, and all measure-
ments are integral multiples of one scaled point. There are 65 536 scaled
points in a point.

Decimal fractions can be written using both the Anglo-American system
with the decimal point (for example, 1in=72.27pt) and the continental Euro-
pean system with a decimal comma; 1in=72,27pt.

Internally TEX works with multiples of a smallest dimension: the scaled
point. Dimensions larger (in absolute value) than 230 − 1sp, which is about
5.75 metres or 18.9 feet, are illegal.

Both the pica system and the didot system are of French origin: in 1737
the type founder Pierre Simon Fournier introduced typographical points based
on the French foot. Although at first he introduced a system based on lines and
points, he later took the point as unit: there are 72 points in an inch, which is
one-twelfth of a foot. About 1770 another founder, François Ambroise Didot,
introduced points based on the more common, and slightly longer, ‘pied du roi’.

8.2.2 Dimension testing

Dimensions and natural sizes of glue can be compared with the \ifdim test.
This takes the form

\ifdim⟨dimen1⟩⟨relation⟩⟨dimen2⟩

where the relation can be an >, <, or = token, all of category 12.

8.2.3 Defined dimensions

\z@ 0pt

98 第 8 章 Dimensions and Glue

\maxdimen 16383.99999pt; the largest legal dimension.

These ⟨dimen⟩s are predefined in the plain format; for instance
\newdimen\z@ \z@=0pt

Using such abbreviations for commonly used dimensions has at least two ad-
vantages. First of all it saves main memory if such a dimension occurs in a
macro: a control sequence is one token, whereas a string such as 0pt takes
three. Secondly, it saves time in processing, as TEX does not need to perform
conversions to arrive at the correct type of object.

Control sequences such as \z@ are only available to a user who changes the
category code of the ‘at’ sign. Ordinarily, these control sequences appear only
in the macros defined in packages such as the plain format.

8.3 More about glue

Glue items can be added to a vertical list with one of the commands \vskip⟨glue⟩,
\vfil, \vfill, \vss or \vfilneg; glue items can be added to a horizontal list
with one of the commands \hskip⟨glue⟩, \hfil, \hfill, \hss or \hfilneg. We
will now treat the properties of glue.

8.3.1 Stretch and shrink

In the syntax given above, ⟨glue⟩ was defined as having

• a ‘natural size’, which is a ⟨dimen⟩, and optionally

• a stretch and shrink componentstretchshrink built out of a ⟨fil dimen⟩.

Each list that TEX builds has amounts of stretch and shrink (possibly zero),
which are the sum of the stretch and shrink components of individual pieces of
glue in the list. Stretch and shrink are used if the context in which the list
appears requires it to assume a size that is different from its natural size.

There is an important difference in behaviour between stretch and shrink
components when they are finite – that is, when the ⟨fildimen⟩ is not fil(l(l)).
A finite amount of shrink is indeed the maximum shrink that TEX will take:
the amount of glue specified as

5pt minus 3pt

can shrink to 2pt, but not further. In contrast to this, a finite amount of stretch
can be stretched arbitrarily far. Such arbitrary stretching has a large ‘badness’,
however. Badness calculation is treated below.

例子：The sequence with natural size 20pt

8.3 More about glue 99

\hskip 10pt plus 2pt \hskip 10pt plus 3pt

has 5pt of stretch, but it has no shrink. In

\hskip 10pt minus 2pt \hskip 10pt plus 3pt

there is 3pt of stretch, and 2pt of shrink, so its minimal size is 18pt.

Positive shrink is not the same as negative stretch:

\hskip 10pt plus -2pt \hskip 10pt plus 3pt

looks a lot like the previous example, but it cannot be shrunk as there
are no minus⟨dimen⟩ specifications. It does have 1pt of stretch, however.

This is another example of negative amounts of shrink and stretch. It
is not possible to stretch glue (in the informal sense) by shrinking it (in
the technical sense):

\hbox to 5cm{a\hskip 0cm minus -1fil}

is an underfull box, because TEX looks for a plus ⟨dimen⟩ specification
when it needs to stretch the contents.

Finally,

\hskip 10pt plus -3pt \hskip 10pt plus 3pt

can neither stretch nor shrink. The fact that there is only stretch avail-
able means that the sequence cannot shrink. However, the stretch com-
ponents cancel out: the total stretch is zero. Another way of looking at
this is to consider that for each point that the second glue item would
stretch, the first one would ‘stretch back’ one point.

Any amount of infinite stretch or shrink overpowers all finite stretch or
shrink available:

\hbox to 5cm{\hskip 0cm plus 16384pt
text\hskip 0cm plus 0.0001fil}

has the text at the extreme left of the box. There are three orders of ‘infinity’,
each one infinitely stronger than the previous one:

\hbox to 5cm{\hskip 0cm plus 16384fil
text\hskip 0cm plus 0.0001fill}

and
\hbox to 5cm{\hskip 0cm plus 16384fill

text\hskip 0cm plus 0.0001filll}

both have the text at the left end of the box.

100 第 8 章 Dimensions and Glue

8.3.2 Glue setting

In the process of glue setting, the desired width (or height) of a box is com-
pared with the natural dimension of its contents, which is the sum of all natural
dimensions of boxes and globs of glue. If the two differ, any available stretcha-
bility or shrinkability is used to bridge the gap. To attain the desired dimension
of the box only the glue of the highest available order is set: each piece of glue
of that order is stretched or shrunk by the same ratio.

For example, in
\hbox to 6pt{\hskip 0pt plus 3pt \hskip 0pt plus 9pt}

the natural size of the box is 0pt, and the total stretch is 12pt. In order to obtain
a box of 6pt each glue item is set with a stretch ratio of 1/2. Thus the result is
equivalent to

\hbox {\hskip 1.5pt \hskip 4.5pt}

Only the highest order of stretch or shrink is used: in
\hbox to 6pt{\hskip 0pt plus 1fil \hskip 0pt plus 9pt}

the second glue will assume its natural size of 0pt, and only the first glue will
be stretched.

TEX will never exceed the maximum value of a finite amount of shrink.
A box that cannot be shrunk enough is called ‘overfull’. Finite stretchability
can be exceeded to provide an escape in difficult situations; however, TEX is
likely to give an Underfull \hbox message about this (see page 66). For an
example of infinite shrink see page 65.

8.3.3 Badness

When stretching or shrinking a list TEX calculates badness badness based
on the ratio between actual stretch and the amount of stretch present in the
line. See Chapter 19 for the application of badness to the paragraph algorithm.

The formula for badness of a list that is stretched (shrunk) is

b = min

(
10 000, 100×

(
actual amount stretched (shrunk)

possible amount of stretch (shrink)

)3
)

In reality TEX uses a slightly different formula that is easier to calculate, but
behaves the same. Since glue setting is one of the main activities of TEX, this
must be performed as efficiently as possible.

This formula lets the badness be a reasonably small number if the glue
set ratio (the fraction in the above expression) is reasonably small, but will let
it grow rapidly once the ratio is more than 1. Badness is infinite if the glue
would have to shrink more than the allotted amount; stretching glue beyond

8.3 More about glue 101

its maximum is possible, so this provides an escape for very difficult lines of
text or pages.

In TEX3, the \badness parameter records the badness of the most recently
formed box.

8.3.4 Glue and breaking

TEX can break lines and pages in several kinds of places. One of these
places is before a glue item. The glue is then discarded. For line breaks this is
treated in Chapter 19, for page breaks see Chapter 27.

There are two macros in plain TEX, \hglue and \vglue, that give non-
disappearing glue in horizontal and vertical mode respectively. For the hor-
izontal case this is accomplished by placing:

\vrule width 0pt \nobreak \hskip ...

Because TEX breaks at the front end of glue, this glue will always stay at-
tached to the rule, and will therefore never disappear. The actual macro defi-
nitions are somewhat more complicated, because they take care to preserve the
\spacefactor and the \prevdepth.

8.3.5 \kern

The \kern command specifies a kern item in whatever mode TEX is cur-
rently in. A kern item is much like a glue item without stretch or shrink. It
differs from glue in that it is in general not a legal breakpoint. Thus in

.. text .. \hbox{a}\kern0pt\hbox{b}

TEX will not break lines in between the boxes; in
.. text .. \hbox{a}\hskip0pt\hbox{b}

a line can be broken in between the boxes.
However, if a kern is followed by glue, TEX can break at the kern (provided

that it is not in math mode). In horizontal mode both the kern and the glue
then disappear in the break. In vertical mode they are discarded when they
are moved to the (empty) current page after the material before the break has
been disposed of by the output routine (see Chapter 27).

8.3.6 Glue and modes

All horizontal skip commands are ⟨horizontal command⟩s and all vertical
skip commands are ⟨vertical commands⟩s. This means that, for instance, an

102 第 8 章 Dimensions and Glue

\hskip command makes TEX start a paragraph if it is given in vertical mode.
The \kern command can be given in both modes.

8.3.7 The last glue item in a list: backspacing

The last glue item in a list can be measured, and it can be removed in
all modes but external vertical mode. The internal variables \lastskip and
\lastkern can be used to measure the last glob of glue in all modes; if the
last glue was not a skip or kern respectively they give 0pt. In math mode
the \lastskip functions as ⟨internal muglue⟩, but in general it classifies as
⟨internal glue⟩. The \lastskip and \lastkern are also 0pt if that was the size
of the last glue or kern item on the list.

The operations \unskip and \unkern remove the last item of a list, if this
is a glue or kern respectively. They have no effect in external vertical mode; in
that case the best substitute is \vskip-\lastskip and \kern-\lastkern.

In the process of paragraph building TEX itself performs an important \unskip:
a paragraph ending with a white line will have a space token inserted by TEX’s
input processor. This is removed by an \unskip before the \parfillskip glue
(see Chapter 17) is inserted.

Glue is treated by TEX as a special case of leaders, which becomes apparent
when \unskip is applied to leaders: they are removed.

8.3.8 Examples of backspacing

The plain TEX macro \removelastskip is defined as
\ifdim\lastskip=0pt \else \vskip-\lastskip \fi

If the last item on the list was a glue, this macro will backspace by its value,
provided its natural size was not zero. In all other cases, nothing is added to
the list.

Sometimes an intelligent version of commands such as \vskip is necessary,
in the sense that two subsequent skip commands should result only in the larger
of the two glue amounts. On page 175 such a macro is used:

\newskip\tempskipa
\def\vspace#1{\tempskipa=#1\relax

\ifvmode \ifdim\tempskipa<\lastskip
\else \vskip-\lastskip \vskip\tempskipa
\fi

\else \vskip\tempskipa \fi}

First of all, this tests whether the mode is vertical; if not, the argument can
safely be placed. Copying the argument into a skip register is necessary because

8.3 More about glue 103

\vspace{2pt plus 3pt} would lead to problems in an \ifdim#1<\lastskip test.
If the surrounding mode was vertical, the argument should only be placed

if it is not less than what is already there. The macro would be incorrect if the
test read

\ifdim\tempskipa>\lastskip
\vskip-\lastskip \vskip\tempskipa

\fi

In this case the sequence
... last word.\par \vspace{0pt plus 1fil}

would not place any glue, because after the \par we are in vertical mode and
\lastskip has a value of 0pt.

8.3.9 Glue in trace output

If the workings of TEX are traced by setting \tracingoutput positive, or if
TEX writes a box to the log file (because of a \showbox command, or because it
is overfull or underfull), glue is denoted by the control sequence \glue. This is
not a TEX command; it merely indicates the presence of glue in the current list.

The box representation that TEX generated from, for instance, \showbox
inserts a space after every explicit \kern, but no space is inserted after an im-
plicit kern that was inserted by the kerning information in the font tfm file.
Thus \kern 2.0pt denotes a kern that was inserted by the user or by a macro,
and \kern2.0pt denotes an implicit kern.

Glue that is inserted automatically (\topskip, \baselineskip, et cetera) is
denoted by name in TEX’s trace output. For example, the box

\vbox{\hbox{Vo}\hbox{b}}

looks like
\vbox(18.83331+0.0)x11.66669
.\hbox(6.83331+0.0)x11.66669
..\tenrm V
..\kern-0.83334
..\tenrm o
.\glue(\baselineskip) 5.05556
.\hbox(6.94444+0.0)x5.55557
..\tenrm b

Note the implicit kern inserted between ‘V’ and ‘o’.

第 9 章 Rules and Leaders

Rules and leaders are two ways of getting TEX to draw a line. Leaders
are more general than rules: they can also fill available space with copies of a
certain box. This chapter explain how rules and leaders work, and how they
interact with modes.

\hrule Rule that spreads in horizontal direction.

\vrule Rule that spreads in vertical direction.

\leaders Fill a specified amount of space with a rule or copies of box.

\cleaders Like \leaders, but with box leaders any excess space is split
equally before and after the leaders.

\xleaders Like \leaders, but with box leaders any excess space is spread
equally before, after, and between the boxes.

9.1 Rules
TEX’s rule commands give rules: rectangular black patches with horizontal

and vertical sides. Most of the times, a rule command will give output that looks
like a rule, but can also be produced by a rule.

TEX has both horizontal and vertical rules, but the names do not necessarily
imply anything about the shape. They do, however, imply something about
modes: an \hrule command can only be used in vertical mode, and a \vrule only
in horizontal mode. In fact, an \hrule is a ⟨vertical command⟩, and a \vrule is
a ⟨horizontal command⟩, so TEX may change modes when encountering these
commands.

Why then is a \vrule called a vertical rule? The reason is that a \vrule
can expand arbitrarily far in the vertical direction: if its height and depth are
not specified explicitly it will take as much room as its surroundings allow.

例子：

104

9.1 Rules 105

\hbox{\vrule\ text \vrule}

looks like

text

and

\hbox{\vrule\ A gogo! \vrule}

looks like

A gogo!

For the \hrule command a similar statement is true: a horizontal rule can
spread to assume the width of its surroundings. Thus

\vbox{\hbox{One line of text}\hrule}

looks like

One line of text

9.1.1 Rule dimensions

Horizontal and vertical rules have a default thickness:

\hrule is the same as \hrule height.4pt depth0pt

and

\vrule is the same as \vrule width.4pt

and if the remaining dimension remains unspecified, the rule extends in that
direction to fill the enclosing box.

Here is the formal specification of how to indicate rule sizes:

⟨vertical rule⟩ −→ \vrule⟨rule specification⟩
⟨horizontal rule⟩ −→ \hrule⟨rule specification⟩
⟨rule specification⟩ −→ ⟨optional spaces⟩
| ⟨rule dimensions⟩⟨rule specification⟩
⟨rule dimension⟩ −→ width⟨dimen⟩ | height⟨dimen⟩ | depth⟨dimen⟩

If a rule dimension is specified twice, the second instance takes precedence
over the first. This makes it possible to override the default dimensions. For
instance, after

\let\xhrule\hrule \def\hrule{\xhrule height .8pt}

the macro \hrule gives a horizontal rule of double the original height, and it is
still possible with

\hrule height 2pt

106 第 9 章 Rules and Leaders

to specify other heights.

It is possible to specify all three dimensions; then
\vrule height1ex depth0pt width1ex

and
\hrule height1ex depth0pt width1ex

look the same. Still, each of them can be used only in the appropriate mode.

9.2 Leaders

Rules are intimately connected to modes, which makes it easy to obtain
some effects. For instance, a typical application of a vertical rule looks like

\hbox{\vrule width1pt\ Important text! \vrule width 1pt}

which gives

Important text!

However, one might want to have a horizontal rule in horizontal mode for effects
such as
←− 5cm −→
from here to there

An \hrule can not be used in horizontal mode, and a vertical rule will not spread
automatically.

However, there is a way to use an \hrule command in horizontal mode and
a \vrule in vertical mode, and that is with leaders, so called because they lead
your eye across the page. A leader command tells TEX to fill a specified space,
in whatever mode it is in, with as many copies of some box or rule specification
as are needed. For instance, the above example was given as

\hbox to 5cm{from here\leaders\hrule\hfil to there}

that is, with an \hrule that was allowed to stretch along an \hfil. Note that
the leader was given a horizontal skip, corresponding to the horizontal mode in
which it appeared.

A general leader command looks like

⟨leaders⟩⟨box or rule⟩⟨vertical/horizontal/mathematical skip⟩

where ⟨leaders⟩ is \leaders, \cleaders, or \xleaders, a ⟨box or rule⟩ is a ⟨box⟩,
\vrule, or \hrule, and the lists of horizontal and vertical skips appear in Chap-
ter 6; a mathematical skip is either a horizontal skip or an \mskip (see page 221).
Leaders can thus be used in all three modes. Of course, the appropriate kind of
skip must be specified.

9.2 Leaders 107

A horizontal (vertical) box containing leaders has at least the height and
depth (width) of the ⟨box or rule⟩ used in the leaders, even if, as can happen in
the case of box leaders, no actual leaders are placed.

9.2.1 Rule leaders

Rule leaders fill the specified amount of space with a rule extending in
the direction of the skip specified. The other dimensions of the resulting rule
leader are determined by the sort of rule that is used: either dimensions can be
specified explicitly, or the default values can be used.

For instance,
\hbox{g\leaders\hrule\hskip20pt f}

gives

g f

because a horizontal rule has a default height of .4pt. On the other hand,
\hbox{g\leaders\vrule\hskip20pt f}

gives

g f

because the height and depth of a vertical rule by default fill the surrounding
box.

Spurious rule dimensions are ignored: in horizontal mode
\leaders\hrule width 10pt \hskip 20pt

is equivalent to
\leaders\hrule \hskip 20pt

If the width or height-plus-depth of either the skip or the box is negative,
TEX uses ordinary glue instead of leaders.

9.2.2 Box leaders

Box leaders fill the available spaces with copies of a given box, instead of
with a rule.

For all of the following examples, assume that a box register has been al-
located:

\newbox\centerdot \setbox\centerdot=\hbox{\hskip.7em.\hskip.7em}

Now the output of
\hbox to 8cm {here\leaders\copy\centerdot\hfil there}

is

here there

108 第 9 章 Rules and Leaders

That is, copies of the box register fill up the available space.
Dot leaders, as in the above example, are often used for tables of contents.

In such applications it is desirable that dots on subsequent lines are vertically
aligned. The \leaders command does this automatically:

\hbox to 8cm {here\leaders\copy\centerdot\hfil there}
\hbox to 8cm {over here\leaders\copy\centerdot\hfil over there}

gives

here there
over here over there

The mechanism behind this is the following: TEX acts as if an infinite row of
boxes starts (invisibly) at the left edge of the surrounding box, and the row of
copies actually placed is merely the part of this row that is not obscured by the
other contents of the box.

Stated differently, box leaders are a window on an infinite row of boxes, and
the row starts at the left edge of the surrounding box. Consider the following
example:

\hbox to 8cm {\leaders\copy\centerdot\hfil}
\hbox to 8cm {word\leaders\copy\centerdot\hfil}

which gives

.
word

The row of leaders boxes becomes visible as soon as it does not coincide with
other material.

The above discussion only talked about leaders in horizontal mode. Lead-
ers can equally well be placed in vertical mode; for box leaders the ‘infinite row’
then starts at the top of the surrounding box.

9.2.3 Evenly spaced leaders

Aligning subsequent box leaders in the way described above means that the
white space before and after the leaders will in general be different. If vertical
alignment is not an issue it may be aesthetically more pleasing to have the
leaders evenly spaced. The \cleaders command is like \leaders, except that it
splits excess space before and after the leaders into two equal parts, centring
the row of boxes in the available space.

例子：

\hbox to 7.8cm {here\cleaders\copy\centerdot\hfil there}
\hbox to 7.8cm {here is\cleaders\copy\centerdot\hfil there}

9.3 Assorted remarks 109

gives
here there
here is there

The ‘expanding leaders’ \xleaders spread excess space evenly between
the boxes, with equal globs of glue before, after, and in between leader
boxes.

例子：

\hbox to 7.8cm{here\hskip.7em
\xleaders\copy\centerdot\hfil \hskip.7em there}

gives

here there

Note that the glue in the leader box is balanced here with explicit glue
before and after the leaders; leaving out these glue items, as in

\hbox to 7.8cm {here\xleaders\copy\centerdot\hfil there}

gives

here there

which is clearly not what was intended.

9.3 Assorted remarks

9.3.1 Rules and modes

Above it was explained how rules can only occur in the appropriate modes.
Rules also influence mode-specific quantities: no baselineskip is added before
rules in vertical mode. In order to prevent glue after rules, TEX sets \prevdepth
to -1000pt (see Chapter 15). Similarly the \spacefactor is set to 1000 after a
\vrule in horizontal mode (see Chapter 19).

9.3.2 Ending a paragraph with leaders

An attempt to simulate an \hrule at the end of a paragraph by
\nobreak\leaders\hrule\hfill\par

does not work. The reason for this is that TEX performs an \unskip at the end
of a paragraph, which removes the leaders. Normally this \unskip removes any
space token inserted by the input processor after the last line. Remedy: stick
an \hbox{} at the end of the leaders.

110 第 9 章 Rules and Leaders

9.3.3 Leaders and box registers

In the above examples the leader box was inserted with \copy. The output
of

\hbox to 8cm {here\leaders\box\centerdot\hfil there}
\hbox to 8cm {over here\leaders\box\centerdot\hfil

over there}

is

here there
over here over there

The box register is emptied after the first leader command, but more than one
copy is placed in that first command.

9.3.4 Output in leader boxes

Any \write, \openout, or \closeout operation appearing in leader boxes is
ignored. Otherwise such an operation would be executed once for every copy of
the box that would be shipped out.

9.3.5 Box leaders in trace output

The dumped box representation obtained from, for instance, \tracingoutput
does not write out box leaders in full: only the total size and one copy of the box
used are dumped. In particular, the surrounding white space before and after
the leaders is not indicated.

9.3.6 Leaders and shifted margins

If margins have been shifted, leaders may look different depending on how
the shift has been realized. For an illustration of how \hangindent and \leftskip
influence the look of leaders, consider the following examples, where

\setbox0=\hbox{K o }

The horizontal boxes above the leaders serve to indicate the starting point of
the row of leaders.

First
\hbox{\leaders\copy0\hskip5cm}
\noindent\advance\leftskip 1em

\leaders\copy0\hskip5cm\hbox{}\par

gives
K o K o K o K o K o K o K o

K o K o K o K o K o K o K o

9.3 Assorted remarks 111

Then
\hbox{\kern1em\hbox{\leaders\copy0\hskip5cm}}
\hangindent=1em \hangafter=-1 \noindent

\leaders\copy0\hskip5cm\hbox{}\par

gives (note the shift with respect to the previous example)
K o K o K o K o K o K o K o

K o K o K o K o K o K o K o

In the first paragraph the \leftskip glue only obscures the first leader box; in
the second paragraph the hanging indentation actually shifts the orientation
point for the row of leaders. Hanging indentation is performed in TEX by a
\moveright of the boxes containing the lines of the paragraph.

第 10 章 编组

TEX提供的编组机制可以将大多数改变限制在局部范围内。此章解释哪些操作
是局部的，以及编组是如何形成的。

\bgroup 隐式的编组开始符。

\egroup 隐式的编组结束符。

\begingroup 开始一个必须用 \endgroup结束的编组。

\endgroup 结束一个用 \begingroup开始的编组。

\aftergroup 保存下一个记号，并在当前编组结束后插入它。

\global 使得赋值，宏定义和算术运算是全局的。

\globaldefs 用于覆盖 \global前缀的参数。IniTEX默认值：0。

10.1 编组机制

一个编组是一串记号，以 ‘组开始’记号开头，以 ‘组结束’记号结尾，而且这两
种记号在其中是配对的。

TEX的编组机制与普通编程语言的块作用域不同。大多数语言的块结构中只能
有局部定义。TEX的编组机制更加强大：编组中的大多数赋值是局部的，在离开该
编组后旧的值将被还原，但可以显式指明全局赋值。
下面局部定义的例子
{\def\a{b}}\a

将给出 ‘undefined control sequence’的错误，因为 \a是在编组内部定义的，类似
地，下列代码

\count0=1 {\count0=2 } \showthe\count0

显示的值为 1；编组内的赋值在该编组结束后将被撤销。
对编组结束时要还原的值的记录是通过保存堆栈的结构来实现的。保存堆

栈的溢出问题在第 35 章中介绍。这个保存堆栈还有另外几个用途：比如在调用
\hbox to 100pt{...}时，在开始新层级的编组之前，所指定的 to 100pt将被放
入保存堆栈中。

112

10.2 局部和全局赋值 113

为避免给保存堆栈造成各种麻烦，IniTEX 不允许在编组内用 \dump 命令转储
格式文件。\end命令可以出现在编组内，但 TEX将对此给出一个诊断信息。
控制系列 \aftergroup 保存一个记号，并在当前编组结束后插入它。此命令

可以放置多个记号，这些记号将按出现的先后顺序被插入。此命令将在第 12章中
讨论.

10.2 局部和全局赋值

给赋值或宏定义加上 \global 前缀，通常可让它们成为全局的，但 ⟨integer
parameter⟩ \globaldefs 的非零值将覆盖 \global 指定：如果 \globaldefs 为
正数，每个赋值都被隐式地添加 \global 前缀，而如果 \globaldefs 为负数，
\global将会被忽略。通常这个参数的取值为零。
有些赋值总是全局的：所有的 ⟨global assignment⟩如下：

⟨font assignment⟩ \fontdimen、\hyphenchar和 \skewchar的赋值。

⟨hyphenation assignment⟩ \hyphenation和 \patterns命令（见第 19章）。

⟨box size assignment⟩ 用 \ht、\dp和 \wd修改盒子尺寸（见第 5章）。

⟨interaction mode assignment⟩ TEX任务的运行模式（见第 32章）。

⟨intimate assignment⟩ 对 ⟨special integer⟩ 或 ⟨special dimen⟩ 的赋值；见
第 86和 93页。

10.3 编组定界符

编组定界符可以由类别码为 1 的 ‘组开始符’ 和类别码为 2 的 ‘组结束符’ 组成
（显式花括号），或者用 \let等价到这两类字符的控制序列组成（隐式花括号），正
如 plain TEX中的 \bgroup和 \egroup。隐式和显式花括号可以配对以定界一个编
组；比如见第 12.3.4节的例子。
编组也可以用 \begingroup 和 \endgroup 定界。这两个控制序列必须一起使

用，它们不能与隐式或显式花括号配对，也不能像花括号那样用于围住盒内素
材等。
用 \begingroup 和 \endgroup 定界可以提供一种有限的运行时错误检测。在

这两个编组定界符之间一个多余的开或闭花括号将有
\begingroup ... } ... \endgroup

或者
\begingroup ... { ... \endgroup

的形式。对这两种情形 TEX都将给出括号不配对的错误信息。这里若改用 \bgroup
和 \egroup将使得错误更加难以发现，因为出现了不正确的配对。这个想法在多种
环境宏中用到。

114 第 10 章 编组

TEX并没有硬性规定花括号作为组开始和结束符。在 plain格式中，它是类似
这样编写的：

\catcode`\{=1 % left brace is begin-group character
\catcode`\}=2 % right brace is end-group character

隐式花括号也在 plain格式中定义：
\let\bgroup={ \let\egroup=}

下面列出一些特殊情形：

• 宏的替换文本必须用显式组开始符和组结束符围住。

• 盒子、\vadjust和 \insert的开始和结束花括号可以是隐式的。这样就可能
像下面这样定义

\def\openbox#1{\setbox#1=\hbox\bgroup}
\def\closebox#1{\egroup\box#1}
\openbox{15}Foo bar\closebox{15}

• 记号列赋值的右边，以及命令 \write、\message、\errmessage、\uppercase、
\lowercase、\special和 \mark的参量是 ⟨general text⟩，定义为

⟨general text⟩ −→ ⟨filler⟩{⟨balanced text⟩⟨right brace⟩

这意味着左花括号可以是隐式的，但右花括号必须是类别码 2 的显式字符记
号。

在可以使用隐式花括号的情形中，如果展开没被显式禁止，TEX将展开记号直
到遇到一个左花括号。这是 \uppercase\expandafter{\romannumeral80}这种写
法的原理，在未展开之前这样的写法并不符合语法。如果第一个不可展开的记号不
是一个左花括号，TEX将给出一个错误信息。
在 TEX的文法（见第 36章）中，用 ⟨left brace⟩和 ⟨right brace⟩表示显式字

符，即字符记号；而用 {和 }表示可能为隐式的字符，即已经用 \let等价到这些
显式字符的控制序列。

10.4 花括号进阶

10.4.1 花括号计数器

TEX有两个计数器用于记录编组的层级：主计数器和平衡计数器。这两个计数
器都是语法计数器：它们计算显式花括号记号的个数，但不受语义上与显式花括号
等价的隐式花括号（比如 \bgroup）的影响。
平衡计数器处理除了阵列之外的所有情形。其工作原理直观而清晰：对每个左

花括号增加一，对每个右花括号减少一，只要该花括号不被跳过。因此对于下面的
语句

\iffalse{\fi

10.4 花括号进阶 115

在它仅仅被扫描时（比如它出现在宏定义文本中）将增加平衡计数器的值；而在它
被执行时花括号将被跳过，从而不会改变平衡计数器的值。
主计数器更加复杂；在阵列中只使用主计数器，不使用平衡计数器。这个计

数器记录所有花括号，即使在被跳过时，像 \iffalse{\fi 这种。对这个计数器，
未计数的已跳过花括号还是可能的：当字母表常数 `{ 和 `} 被执行处理器作为
⟨number⟩ 使用时，不影响这个计数器；当它们被输入处理器查看（仅查看字符，
不含上下文）时，确实会影响这个计数器。

10.4.2 花括号作为记号

显式花扩号是字符记号，而作为字符记号它们是不可展开的。这表示它们直到
TEX处理的最后一个阶段还是存在的。例如，

\count255=1{2}

将给 \count255 赋值 1，并排印 ‘2’，因为左花括号充当了数字 1 的定界符。类似
地，

f{f}

将阻止 TEX形成 ‘ff’连写。
从花括号不可展开的事实，可以得知它们的嵌套与条件语句的嵌套相互独立。

比如
\iftrue{\else}\fi

将给出左花括号，因为条件语句是在展开时处理的。右花括号作为 ⟨false text⟩的
一部分被直接跳过了；这对编组的影响在 TEX处理的后续阶段才显现出来。
非定界的宏参量或者是单个记号，或者是一个用显式花括号围住的编组。因

此，显式的左或右花括号不能作为宏参量。然而，花括号可以用于 \let赋值，就
像这样

\let\bgroup={

这在 plain TEX的 \footnote宏（见第 136页）中用到。

10.4.3 花括号控制符号

控制序列 \{ 和 \} 并不属于这一章，也与编组无关。它们被用 \let 分别
定义为 \lbrace 和 \rbrace 的别名，而这两个控制序列为 \delimiter 指令（见
第 21章）。
计算机现代罗马字体中不包含花括号，但打字机字体中包含；而对于数学公

式，在扩展字体中有不同尺寸的 –且可伸展的 –花括号。

第 11 章 宏定义

在 TEX 中，宏是对一串需要多次用到的命令的缩写机制，它有点像普通编程
语言的过程。然而 TEX的参数机制是与众不同的。这一章解释 TEX的宏如何运作，
并介绍命令 \let和 \futurelet。

\def 开始一个宏定义。

\gdef 等同于 \global\def。

\edef 开始一个宏定义；在定义时替换文本被展开。此命令在下一章也会介绍。

\xdef 等同于 \global\edef。

\csname 开始生成一个控制序列的名称。

\endcsname 结束生成一个控制序列的名称。

\global 使得后面的定义、算术语句或赋值是全局的。

\outer 此前缀表示正在定义的宏只能用在 ‘外部’层级中。

\long 此前缀表示正在定义的宏的参量可以包含 \par记号。

\let 将一个控制序列定义为等价于下一个记号。

\futurelet 将一个控制序列定义为等价于下一个记号之后的记号。

11.1 介绍

基本上宏是缩写为一个控制序列的一串记号。以 \def等开始的语句称为宏定
义，而语句

\def\abc{\de f\g}

就定义了以 \de f\g为替换文本的宏 \abc。以这种方式，宏可以用于缩写需要多
次用到的一段文本或一串命令。在任何时候，只要 TEX 的展开处理器遇到控制序
列 \abc，它就将这个宏用其替换文本代替。
如果想让宏依赖它被用到时的上下文，就可以将它定义为带参数的宏。像下面

这样定义的 \PickTwo
\def\PickTwo#1#2{(#1,#2)}

116

11.2 宏定义的结构 117

有两个参数。这个宏被用到时将取出两段文本，即对应的参量，并将它们排印在圆
括号中。例如：

macro argument1 argument2 expansion
definition \def\PickTwo #1 #2 { (#1,#2) }
use \PickTwo 1 2 (1,2)
use \PickTwo {ab} {cd} (ab,cd)
将宏及其参量用替换文本代替的活动称为宏展开。

11.2 宏定义的结构

一个宏定义按照顺序包含下列各部分：

1. 任意多个 \global、\long和 \outer前缀，

2. 一个 ⟨def⟩控制序列，或者任何用 \let等价到此种控制序列的东西，

3. 一个将要定义的控制序列或活动字符，

4. 一个可能存在的 ⟨parameter text⟩用于指定宏参数的个数及其他东西，以及

5. 一个用类别码为 1和 2的显式字符记号包围的替换文本，在 plain TEX中这两
类字符默认为 {和 }。

这些元素将在接下来各节中解释。
在宏定义完成之后，任何已保存的 \afterassignment记号（见第 12.3.3节）

将被插入进来。
‘展开的’定义 \edef和 \xdef将在第 12章讨论。

11.3 前缀

有三种前缀用于改变宏定义的状态：

\global 如果定义出现在编组内，此前缀将使得该定义成为全局的。除了宏定义
之外，此前缀还能用于赋值；实际上，对于宏定义，可以用缩写形式而不用
\global：

\gdef\foo... 等价于 \global\def\foo...

而

\xdef\foo... 等价于 \global\edef\foo...

如果参数 \globaldefs为正数，所有赋值都被视为全局的；而如果 \globaldefs
为负数，所有 \global 前缀都被忽略，而且 \gdef 和 \xdef 也生成局部的定
义（见第 10章）。

\outer 外部宏的定义机制用于帮助定位未配对花括号（及其他错误）：\outer 宏
只能出现在非嵌入语境中。更准确地说，它不可以出现

118 第 11 章 宏定义

• 在宏的替换文本中（但如果将它放在 \noexpand或 \meaning之后，就可
以出现在 \edef的替换文本中），

• 在参数文本中，

• 在跳过的条件文本中，

• 在阵列的导言中，以及

• 在 \message、\write等的 ⟨balanced text⟩中。

然而，在特定应用中某些 plain宏是外部的很不方便，特别是像 \newskip这
样的宏。有个补救方法是将它们重新定义为非外部的宏，这正是 LATEX 所做
的，但还有更巧妙的做法。

\long 宏的参量通常不允许包含 \par记号。这个限制在定位遗漏的右括号时很有
用（比 \outer定义有用得多）。例如，对于下面的输入 TEX将抱怨 ‘runaway
argument’：

\def\a#1{ ... #1 ... }
\a {This sentence should be in braces.

And this is not supposed to be part of the argument

其中的空行生成一个 \par，这在多数时候意味着有个右花括号漏掉了。
如果某个宏允许其参量包含 \par记号，则这个宏应当定义为 \long宏。

在测试两个记号是否相等时（见第 13章），\ifx也会将前缀考虑在内。

11.4 定义的类型

在 TEX中有四种 ⟨def⟩控制序列：\def、\gdef、\edef和 \xdef。其中 \gdef
是 \global\def的同义词，而 \xdef是 \global\edef的同义词。而 ‘展开的定义’
\edef在第 12章中介绍。

各种宏定义仅在定义时有区别。在宏被调用时是无法知道它们是如何定义的。

11.5 参数文本

在所定义的控制序列或活动字符以及替换文本的左花括号之间，可以有
⟨parameter text⟩，参数文本有点像普通编程语言的参量。它指定这个宏是否有参
数，有多少个参数，以及各参数之间如何定界。⟨parameter text⟩不能包含显式花
括号。

一个宏最多可以有九个参数。参数用参数记号表示，参数记号由宏参数字符
（即类别码为 6 的字符，在 plain TEX 中为 #）后跟一个 1–9 的数字组成。举个例
子，#6表示宏的第六个参数。参数记号不能出现在宏定义之外的其他地方。

11.5 参数文本 119

在参数文本中，参数必须从 1 开始顺序编号。参数记号后的空格是有意义的，
不管是在参数文本还是在替换文本中。
参数分为定界参数和非定界参数；它决定宏参量的范围。如果在 ⟨parameter

text⟩ 中一个参数后面紧跟着另一个参数，就像 \def\foo#1#2 这样，则前面
的参数就是非定界的。如果一个参数后面紧跟着替换文本的左花括号，就像
\def\foo#1{...} 这样，则它也是非定界的。一个参数称为定界的，如果它后面
紧跟着其他记号；比如 \def\foo#1!#2{...} 的第一个参数就是被感叹号定界的
参数。
在宏展开（或 ‘调用’）时，用于替换参数的（零个或多个）记号称为该参数对

应的 ‘参量’。

11.5.1 非定界参数

在带有非定界参数的宏，比如单参数宏 \foo
\def\foo#1{ ... #1 ...}

被展开时，TEX往前扫描（但不展开）直到遇到一个非空格记号。如果这个记号不
是显式 ⟨left brace⟩，它就被取为对应于该参数的参量。否则，通过扫描直到找到
匹配的显式 ⟨right brace⟩，TEX 得到一个 ⟨balanced text⟩。这个平衡文本就要找
的参量。
这里是个带有三个非定界参数的宏的例子：对于
\def\foo#1#2#3{#1(#2)#3}

宏调用 \foo123给出 ‘1(2)3’；而 \foo 1 2 3给出同样的结果。在调用

\foo 1 2 3

中，第一个空格被 TEX的输入处理器跳过。从而对应于第一个参数的参量是 1。为
找到第二个参量，TEX 跳过所有空格（在此例子中跳过一个空格），最后找到的第
二个参量是 2。类似的第三个参量是 3。
为了将多个记号作为一个非定界参量，你可以使用花括号。对于上述的 \foo

定义，调用 \foo a{bc}d将给出 ‘a(bc)d’。当宏的参量是平衡文本而非单个记号时，
在将参量插入替换文本时定界花括号会被去掉。例如：

\def\foo#1{\count0=1#1\relax}
\foo{23}

将展开为 \count0=123\relax，这将对计数器赋值 123。另一方面，下面语句
\count0=1{23}

将赋值 1并排印 23。

11.5.2 定界参数

除了将它们括在花括号里面，还有另一种方式可将一串记号作为宏的一个参
量，即使用定界的参数。

120 第 11 章 宏定义

在 ⟨parameter text⟩中，出现在宏参数之后（即在紧跟参数字符的参数编号之
后）的非参数记号被当作该参数的定界子。定界子可以包含空格记号：参数编号之
后的空格是有意义的。定界记号同样出现在所定义的控制序列和它的第一个参数记
号 #1之间。
对于在参数文本中充当定界子的字符记号，它们的字符码和类别码都被存储下

来；实际参量的定界字符记号必须和两者都匹配。这些字符可以拥有一些通常只出
现在特殊环境中的类别码；比如，在定义

\def\foo#1_#2^{...}

之后，宏 \foo可以在数学模式之外使用。
在寻找对应于一个定界参数的参量时，TEX吸收所有记号而不展开它们（但保

持花括号配对），直到遇到（完全一致的）定界记号串。定界记号串不是参量的一
部分；在宏调用时它们被从输入流中移除。

11.5.3 定界参量举例

作为一个简单例子，我们定义一个宏
\def\DoASentence#1#2.{{#1#2.}}

它的第一个参数是非定界的，而第二个参数是用句号定界的。像下面这样调用时
\DoASentence \bf This sentence is the argument.

它的两个参量分别是：
#1<-\bf
#2<-This sentence is the argument

注意结尾的句号不在参量中，但它已经被吸收了，不会再出现在输入流中。
常用的定界子是 \par，例如：
\def\section#1. #2\par{\medskip\noindent {\bf#1. #2\par}}

这个宏第一个参数用 ‘. ’定界，而第二个参数用 \par定界。像下面调用此宏
\section 2.5. Some title

The text of the section...

将给出

#1<-2.5
#2<-Some title

注意在第二个由行尾符生成的参量的末尾有个空格。如果这个空格是多余的，你可
以定义

\def\section#1. #2 \par{...}

从而用 \par定界第二个参量。然而这种方法导致用户不可以显式写上 \par：
\section 2.5 Some title\par

解决这种两难选择的其中一种方法是，在需要去掉结尾空格时，在定义文本中写上
#2\unskip。

11.5 参数文本 121

充当定界子的控制序列不需要已经定义，因为它们只被吸收不会被展开。因此
\def\control#1\sequence{...}

是有效的定义，即使在 \sequence未定义时。
下面的例子展示了定界参量的类别码是至关重要的：
\def\a#1 #2.{ ... }
\catcode`\ =12
\a b c
d.

将给出
\a #1 #2.-> ...
#1<- b c
#2<-d

解释：参数 1和参数 2之间的定界子是一个第 10类的空格。在 a和 b之间有一个
第 12类的空格；第一个第 10类的空格是由行尾生成的空格。
在第 13章对 \newif的解释，以及在第 33页的例子中，有类别码匹配的实际

例子。

11.5.4 空参量

在 TEX 需要一个宏参量时，如果用户指定一个围在花括号中的 ⟨balanced
text⟩，则该文本就被用作参量。因此，指定 {}给出的参量是一个空记号列；它称
为 ‘空参量’。
在使用定界参数时也可能得到空参量。例如，在下述定义
\def\mac#1\ro{ ... }

之后，这样调用
\mac\ro

将给出一个空参量。

11.5.5 宏参数字符

在 TEX 的输入处理器扫描宏定义文本时，它对后面跟着数字的每个宏参数字
符插入一个参数记号。实际上，在替换文本中，参数记号表示 ‘在这里插入某某编
号的参量’。连续两个参数字符被替换为一个。
后一个的事实可以用于嵌套的宏定义。下面的定义
\def\a{\def\b#1{...}}

给出一个错误信息，因为 \a被定义为不带参数的宏，而在它的替换文本中有一个
参数记号。
下面的语句
\def\a#1{\def\b#1{...}}

122 第 11 章 宏定义

定义了宏 \a，这个宏又定义了另一个宏 \b。然而，\b任然不带任何参数：这样调
用

\a z

就定义了一个不带参数的宏 \b，其后必须跟着 z。注意这并不是在定义宏 \bz，因
为 TEX的输入处理器读取输入行时就已经形成了控制序列 \b。
最后，
\def\a{\def\b##1{...}}

定义了带一个参数的宏 \b。
我们来仔细检查一下参数字符的处理过程。考虑下面定义
\def\a#1{ .. #1 .. \def\b##1{ ... }}

当这个语句作为输入被读取时，输入处理器

• 将字符串 #1替换为 ⟨parameter token1⟩，并且

• 将字符串 ##替换为 #

在调用宏 \a时，输入处理器将扫描
\def\b#1{ ... }

并将其中两个字符的 #1替换为一个参数记号。

11.5.6 花括号定界

在定义的 ⟨parameter text⟩中通常是不可能有左或右花括号的。然而，有一种
特殊规定可以让宏的最后一个参数看似用左花括号定界的。
如果最后一个参数记号后面是一个参数字符（#），接着是替换文本的左花括

号，TEX将让最后一个参数以组开始符定界。此外，与参数文本的其他定界记号不
同，这个左花括号不会被从输入流中移除。
考虑一个例子。假设你想有个宏 \every宏用于像下面这样填充记号列：
\every par{abc} \every display{def}

这个宏可以定义为
\def\every#1#{\csname every#1\endcsname}

在上面的第一个调用中，对应于参数的参量是 abc，因此该调用展开为
\csname everypar\endcsname{abc}

这就给出所要的结果。

11.6 构造控制序列

命令 \csname和 \endcsname可用于构造控制序列。例如
\csname hskip\endcsname 5pt

等价于 \hskip5pt。

11.7 用 \let 和 \futurelet 给出记号赋值 123

在构造的过程中，介于 \csname和 \endcsname之间的所有宏和其他可展开控
制序列都如常展开，直到仅留下不可展开的字符记号。若将上面例子改写为

\csname \ifhmode h\else v\fi skip\endcsname 5pt

则它将依据当前模式执行 \hskip 或 \vskip。展开的最后结果必须只包含字符记
号，但对它们的类别码却无限制。在碰到不可展开的控制序列时，TEX将抛出一个
错误，并在错误恢复时在该处之前插入一个 \endcsname。
利用 \csname，我们可以构造通常无法写出的，包含类别码不为 11（字母）的

字符的控制序列。这个原理可用于对用户隐藏宏包内部的控制序列。

例子：

\def\newcounter#1{\expandafter\newcount
\csname #1:counter\endcsname}

\def\stepcounter#1{\expandafter\advance
\csname #1:counter\endcsname 1\relax}

第二个定义中的 \expandafter是多余的，但它没有坏处，且可以让代码
更清楚。

\newcounter创建的计数器的名称中包含一个冒号，因此写起来有点麻烦。好
处是现在这个计数器对用户是隐藏的，它只能通过类似 \stepcounter的控制序列
来访问。顺便说一下，在 plain格式中 \newcount被定义为 \outer宏，因此在重
新定义 \newcount后才能写出上述定义。
如果用 \csname...\endcsname生成的控制序列之前尚未定义，它就被定义为

\relax。因此如果 \xx是一个未定义的控制序列，命令
\csname xx\endcsname

将不会导致错误信息，因为它等价于\relax。此外，在执行 \csname...\endcsname
语句后，控制序列 \xx本身等价于 \relax，因此它也不再导致 ‘undefined control
sequence’的错误（另见第 138页）。

11.7 用 \let 和 \futurelet 给出记号赋值

在 TEX中有两个 ⟨let assignment⟩。它们的语法为

\let⟨control sequence⟩⟨equals⟩⟨one optional space⟩⟨token⟩
\futurelet⟨control sequence⟩⟨token⟩⟨token⟩

在 \futurelet赋值的语法中，不可以出现可选的等号。

11.7.1 \let

原始命令 \let将某个记号的当前含义赋予一个控制序列或活动字符。
例如，在 plain格式中，\endgraf定义为
\let\endgraf=\par

124 第 11 章 宏定义

这使得宏的编写者可以重新定义 \par，而原始的 \par 命令的功能仍然可以使用。
例如，

\everypar={\bgroup\it\def\par{\endgraf\egroup}}

在第 3章中已经讨论了 ⟨token⟩不是控制序列而是字符记号的情形。

11.7.2 \futurelet

如上所述，\let系列

\let⟨control sequence⟩⟨token1⟩⟨token2⟩⟨token3⟩⟨token· · ·⟩

将 ⟨token1⟩（的含义）赋予该控制序列，而剩下的输入流如下

⟨token2⟩⟨token3⟩⟨token· · ·⟩

即 ⟨token1⟩从输入流中消失了。
命令 \futurelet的运作稍有不同：对于下面的输入流

\futurelet⟨control sequence⟩⟨token1⟩⟨token2⟩⟨token3⟩⟨token· · ·⟩

它将 ⟨token2⟩（的含义）赋予该控制序列，而剩下的输入流如下

⟨token1⟩⟨token2⟩⟨token3⟩⟨token· · ·⟩

也就是说，⟨token1⟩ 和 ⟨token2⟩ 都不会被从输入流中去掉。然而，现在 ⟨token1⟩
无需将 ⟨token2⟩取为宏参数就 ‘知道’它是什么。见后面给出的例子。
在字符记号已经被 \futurelet 到一个控制序列时，它的类别码就已经确定

了。随后的 ⟨token1⟩无法再改变它。

11.8 杂项注记

11.8.1 活动字符

类别码 13的字符记号称为活动字符，我们可以像控制序列那样定义它。如果
这种字符的定义出现在宏里面，在宏定义时这个字符必须是活动的。
以下面的定义为例（取自第 2章）：
{\catcode`\^^M=13 %
\gdef\obeylines{\catcode`\^^M=13 \def^^M{\par}}%
}

在定义 \obeylines 前必须先设定好 ^^M 字符的类别码，否则 TEX 会认为该行在
\def之后结束。

11.8.2 宏与原始命令

相比其他编程语言，在 TEX中原始命令与用户宏的区分并不大重要。

• 用户可以用别的名称使用原始命令：

11.8 杂项注记 125

\let\StopThisParagraph=\par

• 原始命令的名称可以给用户宏使用：
\def\par{\hfill\bullet\endgraf}

• 很多原始命令和用户宏一样都可以展开，比如所有条件句，以及类似 \number
和 \jobname的命令。

11.8.3 尾递归

TEX中的宏，与大多数现代编程语言一样，可以是递归的：即在宏定义中可以
调用这个宏本身，或者另一个将调用这个宏的宏。如果同一个递归宏的 ‘化身’在同
一时间出现太多次，它容易弄乱 TEX 的内存。然而，对于尾递归这种常见的递归
情形，TEX能够避免出现混乱。
要理解这里发生的事情，需要一些背景知识。在开始执行一个宏时，TEX抓取

宏的参量，然后在输入栈上放置一个指向替换文本的项目，这样扫描器接着将转到
替换文本中。一旦它处理完毕，输入栈中的这个项目将被移除。然而，如果宏的定
义文本中包含另外的宏，这个过程将对它们重复进行：新的项目将被放在输入栈
上，引导扫描器到其他宏中，甚至在第一个宏还未完成时，
一般来说，这种 ‘栈构建’不是很好但却是无可避免的；然而如果嵌套宏调用出

现在宏的替换文本末尾的记号处，这是可以避免的。在末尾的记号后没有其他记号
需要处理，因此我们可以在新的宏放进来之前清除输入栈顶部的项目。这正是 TEX
所做的事情。

Plain TEX的 \loop对这个原理给出很好的说明。它的定义是
\def\loop#1\repeat{\def\body{#1}\iterate}
\def\iterate{\body \let\next=\iterate

\else \let\next=\relax\fi \next}

而这个宏可以用类似下面的例子来调用：
\loop \message{\number\MyCount}

\advance\MyCount by 1
\ifnum\MyCount<100 \repeat

宏 \iterate可以调用它自己，而且当它这样做时，递归调用出现在列表的末尾记
号。也许可以将 \iterate定义为

\def\iterate{\body \iterate\fi}

但这样 TEX 将无法消除这个递归，因为对 \iterate 的调用并不出现在 \iterate
的替换文本的末尾记号. 这里的赋值 \let\next=\iterate就是一种让递归调用出
现在列表的末尾记号的方法。
另一种消除尾递归的方法是使用 \expandafter（见第 156页）：在下面
\def\iterate{\body \expandafter\iterate\fi}

这种写法中，它去掉了 \fi记号。如果列表的末尾记号是递归宏的参量，尾递归也
将被消除。

126 第 11 章 宏定义

顺便说一句：如果将 \iterate定义为
\def\iterate{\let\next\relax

\body \let\next\iterate \fi \next}

就可以这些写
\loop ... \if... ... \else ... \repeat

11.9 宏的技巧

11.9.1 不确定个数的参量

在某些应用中，我们希望宏的参量个数不用先规定好。

考虑在国际象棋棋盘上转换位置的问题（全部宏和字体可以在 [37]和 [47]中
找到），比如要将棋谱记法

\White(Ke1,Qd1,Na1,e2,f4)

转换为一串排版好的走法
\WhitePiece{K}{e1} \WhitePiece{Q}{d1} \WhitePiece{N}{a1}
\WhitePiece{P}{e2} \WhitePiece{P}{f4}

注意在位置列表中兵前面的 ‘P’被省略掉了。

首要问题在于棋子列表是变长的，因此我们添加一个终止棋子：
\def\White(#1){\xWhite#1,xxx,}
\def\endpiece{xxx}

这样我们就可以检测到。接下来，\xWhite从列表中读取一个位置，检测它是否为
终止棋子；如果不是，依据它是否为一个兵分别处理。

\def\xWhite#1,{\def\temp{#1}%
\ifx\temp\endpiece
\else \WhitePieceOrPawn#1XY%

\expandafter\xWhite
\fi}

其中必须用 \expandafter 命令去掉 \fi（见第 156 页），使得 \xWhite 以下一个
位置而不是 \fi为参量。
位置的长度为两个或三个字符长。在调用四参数宏 \WhitePieceOrPawn 时添

加了一个终止字符串 XY。因此，对棋子为兵的情形，第 3个参量为字符 X而第 4个
参量为空；对其他棋子的情形，第 1个参量是该棋子，而第 2和 3个参量为具体的
位置，第 4个参量为 X。

\def\WhitePieceOrPawn#1#2#3#4Y{
\if#3X \WhitePiece{P}{#1#2}%
\else \WhitePiece{#1}{#2#3}\fi}

11.9 宏的技巧 127

11.9.2 检查参量

在有些时候。我们需要检查宏参量中是否包含某个元素。考虑下面的实际例子
（另见第 231页的 \DisplayEquation的例子）。

假设文章的标题和作者为
\title{An angle trisector}
\author{A.B. Cee\footnote*{Research supported by the
Very Big Company of America}}

而有多个作者时为
\author{A.B. Cee\footnote*{Supported by NSF grant 1}

\and
X.Y. Zee\footnote{**}{Supported by NATO grant 2}}

另外假设 \title和 \author宏定义为
\def\title#1{\def\TheTitle{#1}} \def\author#1{\def\TheAuthor{#1}}

这将会被这样使用
\def\ArticleHeading{ ... \TheTitle ... \TheAuthor ... }

有些期刊要求文章的作者和标题全部大写。这种要求的实现方式可能是
\def\ArticleCapitalHeading

{ ...
\uppercase\expandafter{\TheTitle}
...
\uppercase\expandafter{\TheAuthor}
...

}

现在 \expandafter 命令将展开标题和作者为实际文本，接着 \uppercase 命令将
把它们变为大写。然而，对于这样写对作者名来说是错误的，因为 \uppercase命
令将脚注文本也大写了。现在的问题在于如何仅将在脚注之间的文本变为大写。

作为第一次尝试，让我们先考虑只有一个作者的情形，设基本调用为
\expandafter\UCnoFootnote\TheAuthor

这将展开为
\UCnoFootnote A.B. Cee\footnote*{Supported ... }

这个宏
\def\UCnoFootnote#1\footnote#2#3{\uppercase{#1}\footnote{#2}{#3}}

将正确地分析它：
#1<-A.B. Cee
#2<-*
#3<-Supported ...

然而，如果脚注不存在时，这个宏将是完全错误的。

作为首个改进，我们自己添加脚注，以让它始终存在：
\expandafter\UCnoFootnote\TheAuthor\footnote 00

128 第 11 章 宏定义

现在我们得检测所找到的脚注的类型：
\def\stopper{0}
\def\UCnoFootnote#1\footnote#2#3{\uppercase{#1}\def\tester{#2}%

\ifx\stopper\tester
\else\footnote{#2}{#3}\fi}

我们用 \ifx区分出定界脚注号和实际脚注号。注意如果改用
\ifx0#2

将是错误的，因为脚注号可能包含多个记号，比如 {**}。
到目前为止，如果没有脚注这个宏是正确的，但如果有个脚注它是错误的：这

几个终结记号还有待我们处理掉。在下面这个版本中它们会被小心处理好：
\def\stopper{0}
\def\UCnoFootnote#1\footnote#2#3{\uppercase{#1}\def\tester{#2}%

\ifx\stopper\tester
\else\footnote{#2}{#3}\expandafter\UCnoFootnote
\fi}

重复调用 \UCnoFootnote将去掉定界记号（\expandafter先去掉了 \fi），而且作
为额外收获，这个宏对于多个作者的情形也是正确的。

11.9.3 用 \futurelet 实现可选的宏参数

\futurelet的其中一个标准用法就是实现宏的可选参数。一般做法如下：
\def\Com{\futurelet\testchar\MaybeOptArgCom}
\def\MaybeOptArgCom{\ifx[\testchar \let\next\OptArgCom

\else \let\next\NoOptArgCom \fi \next}
\def\OptArgCom[#1]#2{ ... }\def\NoOptArgCom#1{ ... }

注意即便它测试的是个字符还是使用了 \ifx。原因当然是，如果可选参量不存在，
在 \Com之后可能会是一个可展开的控制序列。
现在宏 \Com有一个可选参量以及一个常规参量；我们可以这样
\Com{argument}

或者这样
\Com[optional]{argument}

调用它。通常不带可选参量的调用将插入默认值：

\def\NoOptArgCom#1{\OptArgCom[default]{#1}}

这种机制在类似 LATEX和 LAMSTEX的格式中广泛用到；另外可以参考 [49]。

11.9.4 两步宏

用户经常会觉得某个宏事实上是一个两步的过程，其中第一个宏设定好条件，
而第二个宏将执行操作。
作为例子，这里有个 \PickToEol宏，它的参量以行尾符定界。首先我们写出

第一个不带参量的宏，它改变行尾符的类别码，然后调用第二个宏。

11.9 宏的技巧 129

\def\PickToEol{\begingroup\catcode`\^^M=12 \xPickToEol}

现在第二个宏将以直到行尾的所有内容作为它的参量：
\def\xPickToEol#1^^M{ ... #1 ... \endgroup}

这个定义有个问题：^^M符的类别码必须为 12。我们改进一下：
\def\PickToEol{\begingroup\catcode`\^^M=12 \xPickToEol}
{\catcode`\^^M=12 %
\gdef\xPickToEol#1^^M{ ... #1 ... \endgroup}%
}

其中为 \xPickToEol 的定义改变了 ^^M 的类别码。注意 \PickToEol 中的 ^^M 作
为控制符号出现，此时它的类别码是无关紧要的。因此那个定义可以出现在重新定
义 ^^M的类别码的编组的外边。

11.9.5 注释环境

作为上述两步宏的想法的应用，也为了演示尾递归，这里是一个 ‘注释’ 环境
的宏。
我们经常需要临时删除部分 TEX输入。为此我们想这样写
\comment
...
\endcomment

最简单的实现方式，
\def\comment#1\endcomment{}

有许多不足。比如，它无法妥善处理外部宏或者花括号不匹配的输入。然而，最大
的不足是它将整个注释文本作为宏参量读取。这使得注释文本的长度不能超过 TEX
的输入缓冲区的大小。
将注释文本逐行取出会更好些。为此我们需要编写一个递归宏
\def\comment#1^^M{ ... \comment }

为使这个定义能写出来，行尾符的类别码必须改变。和上面一样我们将有
\def\comment{\begingroup \catcode`\^^M=12 \xcomment}
{\catcode`\^^M=12 \endlinechar=-1 %
\gdef\xcomment#1^^M{ ... \xcomment}
}

改变 \endlinechar只不过是为了避免在这个定义的每行末尾加上注释符。
当然，这个过程必须在某个地方停止。为此我们考察已被取为宏参量的文本

行：
{\catcode`\^^M=12 \endlinechar=-1 %
\gdef\xcomment#1^^M{\def\test{#1}

\ifx\test\endcomment \let\next=\endgroup
\else \let\next=\xcomment \fi
\next}

}

130 第 11 章 宏定义

而我们必须定义 \endcomment如下：
\def\endcomment{\endcomment}

这个命令将永远不会被执行；它只是用于测试是否已经到达环境的结尾处。
我们也许想注释掉语法不正确的文本。因此在注释时我们切换到抄录模式。下

面的宏是 plain TEX给出的：
\def\dospecials{\do\ \do\\\do\{\do\}\do\$\do\&%
\do\#\do\^\do\^^K\do_\do\^^A\do\%\do\~}

我们把它用到 \comment的定义中：
\def\makeinnocent#1{\catcode`#1=12 }
\def\comment{\begingroup

\let\do=\makeinnocent \dospecials
\endlinechar`\^^M \catcode`\^^M=12 \xcomment}

这种方法除了能注释掉语法错误比如花括号不匹配的文本外，还能处理外部宏。之
前的 \xcomment实现在注释文本包含外部宏时将会产生 TEX错误。
然而，使用抄录模式给结束环境造成了问题。注释的最后一行现在不是控制序

列 \endcomment，而是由一串字符组成。这样我们就必须测试这个字符串：
{\escapechar=-1
\xdef\endcomment{\string\\endcomment}
}

代码 \string\\给出一个反斜线。我们不能这样写
\edef\endcomment{\string\endcomment}

因为这样写单词 endcomment各字母的类别码将为 12，而与它们在注释最后一行中
的类别码 11不相等。

第 12 章 Expansion

Expansion in TEX is rather different from procedure calls in most program-
ming languages. This chapter treats the commands connected with expansion,
and gives a number of (non-trivial) examples.

\relax Do nothing.

\expandafter Take the next two tokens and place the expansion of the second
after the first.

\noexpand Do not expand the next token.

\edef Start a macro definition; the replacement text is expanded at definition
time.

\aftergroup Save the next token for insertion after the current group.

\afterassignment Save the next token for execution after the next
assignment or macro definition.

\the Expand the value of various quantities in TEX into a string of character
tokens.

12.1 Introduction

TEX’s expansion processor accepts a stream of tokens coming out of the in-
put processor, and its result is again a stream of tokens, which it feeds to the
execution processor. For the input processor there are two kinds of tokens: ex-
pandable and unexpandable ones. The latter category is passed untouched, and
it contains largely assignments and typesettable material; the former category
is expanded, and the result of that expansion is examined anew.

131

132 第 12 章 Expansion

12.2 Ordinary expansion
The following list gives those constructs that are expanded, unless expan-

sion is inhibited:

• macros

• conditionals

• \number, \romannumeral

• \string, \fontname, \jobname, \meaning, \the

• \csname ... \endcsname

• \expandafter, \noexpand

• \topmark, \botmark, \firstmark, \splitfirstmark, \splitbotmark

• \input, \endinput

This is the list of all instances where expansion is inhibited:

• when TEX is reading a token to be defined by

– a ⟨let assignment⟩, that is, by \let or \futurelet,

– a ⟨shorthand definition⟩, that is, by \chardef or \mathchardef, or a
⟨register def⟩, that is, \countdef, \dimendef, \skipdef, \muskipdef,
or \toksdef,

– a ⟨definition⟩, that is a macro definition with \def, \gdef, \edef, or \xdef,

– the ⟨simple assignment⟩s \read and \font;

• when a ⟨parameter text⟩ or macro arguments are being read; also when
the replacement text of a control sequence being defined by \def, \gdef, or
\read is being read;

• when the token list for a ⟨token variable⟩ or \uppercase, \lowercase, or
\write is being read; however, the token list for \write will be expanded
later when it is shipped out;

• when tokens are being deleted during error recovery;

• when part of a conditional is being skipped;

• in two instances when TEX has to know what follows

– after a left quote in a context where that is used to denote an integer
(thus in \catcode`\a the \a is not expanded), or

– after a math shift character that begins math mode to see whether
another math shift character follows (in which case a display opens);

• when an alignment preamble is being scanned; however, in this case a to-

12.3 Reversing expansion order 133

ken preceded by \span and the tokens in a \tabskip assignment are still
expanded.

12.3 Reversing expansion order

Every once in a while you need to change the normal order of expansion
of tokens. TEX provides several mechanisms for this. Some of the control se-
quences in this section are not strictly concerned with expansion.

12.3.1 One step expansion: \expandafter

The most obvious tool for reversed expansion order is \expandafter. The
sequence

\expandafter⟨token1⟩⟨token2⟩

expands to

⟨token1⟩⟨the expansion of token2⟩

Note the following.

• If ⟨token2⟩ is a macro, it is replaced by its replacement text, not by its final
expansion. Thus, if

\def\tokentwo{\ifsomecondition this \else that \fi}
\def\tokenone#1{ ... }

the call
\expandafter\tokenone\tokentwo

will give \ifsomecondition as the parameter to \tokenone:
\tokenone #1-> ...
#1<-\ifsomecondition

• If the \tokentwo is a macro with one or more parameters, sufficiently many
subsequent tokens will be absorbed to form the replacement text.

12.3.2 Total expansion: \edef

Macros are usually defined by \def, but for the cases where one wants the
replacement text to reflect current conditions (as opposed to conditions at the
time of the call), there is an ‘expanding define’, \edef, which expands everything
in the replacement text, before assigning it to the control sequence.

例子：

134 第 12 章 Expansion

\edef\modedef{This macro was defined in
`\ifvmode vertical\else \ifmmode math
\else horizontal\fi\fi' mode}

The mode tests will be executed at definition time, so the replacement
text will be a single string.

As a more useful example, suppose that in a file that will be \input the
category code of the @ will be changed. One could then write

\edef\restorecat{\catcode`@=\the\catcode`@}

at the start, and

\restorecat

at the end. See page 145 for a fully worked-out version of this.

Contrary to the ‘one step expansion’ of \expandafter, the expansion inside
an \edef is complete: it goes on until only unexpandable character and control
sequence tokens remain. There are two exceptions to this total expansion:

• any control sequence preceded by \noexpand is not expanded, and,

• if \sometokenlist is a token list, the expression
\the\sometokenlist

is expanded to the contents of the list, but the contents are not expanded
any further (see Chapter 14 for examples).

On certain occasions the \edef can conveniently be abused, in the sense
that one is not interested in defining a control sequence, but only in the result
of the expansion. For example, with the definitions

\def\othermacro{\ifnum1>0 {this}\else {that}\fi}
\def\somemacro#1{ ... }

the call
\expandafter\somemacro\othermacro

gives the parameter assignment
#1<-\ifnum

This can be repaired by calling
\edef\next{\noexpand\somemacro\othermacro}\next

Conditionals are completely expanded inside an \edef, so the replacement text
of \next will consist of the sequence

\somemacro{this}

and a subsequent call to \next executes this statement.

12.3 Reversing expansion order 135

12.3.3 \afterassignment

The \afterassignment command takes one token and sets it aside for in-
sertion in the token stream after the next assignment or macro definition. If
the first assignment is of a box to a box register, the token will be inserted right
after the opening brace of the box (see page 67).

Only one token can be saved this way; a subsequent token saved by \afterassignment
will override the first.

Let us consider an example of the use of \afterassignment. It is often
desirable to have a macro that will

• assign the argument to some variable, and then

• do a little calculation, based on the new value of the variable.

The following example illustrates the straightforward approach:
\def\setfontsize#1{\thefontsize=#1pt\relax

\baselineskip=1.2\thefontsize\relax}
\setfontsize{10}

A more elegant solution is possible using \afterassignment:
\def\setbaselineskip

{\baselineskip=1.2\thefontsize\relax}
\def\fontsize{\afterassignment\setbaselineskip

\thefontsize}
\fontsize=10pt

Now the macro looks like an assignment: the equals sign is even optional. In re-
ality its expansion ends with a variable to be assigned to. The control sequence
\setbaselineskip is saved for execution after the assignment to \thefontsize.

Examples of \afterassignment in plain TEX are the \magnification and
\hglue macros. See [31] for another creative application of this command.

12.3.4 \aftergroup

Several tokens can be saved for insertion after the current group with an

\aftergroup⟨token⟩
command. The tokens are inserted after the group in the sequence the \aftergroup
commands were given in. The group can be delimited either by implicit or ex-
plicit braces, or by \begingroup and \endgroup.

例子：

{\aftergroup\a \aftergroup\b}

is equivalent to

\a \b

136 第 12 章 Expansion

This command has many applications. One can be found in the \textvcenter
macro on page 146; another one is provided by the footnote mechanism of plain
TEX.

The footnote command of plain TEX has the layout

\footnote⟨footnote symbol⟩{⟨footnote text⟩}

which looks like a macro with two arguments. However, it is undesirable to
scoop up the footnote text, since this precludes for instance category code changes
in the footnote.

What happens in the plain footnote macro is (globally) the following.

• The \footnote command opens an insert,
\def\footnote#1{ ...#1... %treat the footnote sign

\insert\footins\bgroup

• In the insert box a group is opened, and an \aftergroup command is given
to close off the insert properly:

\bgroup\aftergroup\@foot

This command is meant to wind up after the closing brace of the text that
the user typed to end the footnote text; the opening brace of the user’s
footnote text must be removed by

\let\next=}%end of definition \footnote

which assigns the next token, the brace, to \next.

• The footnote text is set as ordinary text in this insert box.

• After the footnote the command \@foot defined by
\def\@foot{\strut\egroup}

will be executed.

12.4 Preventing expansion

Sometimes it is necessary to prevent expansion in a place where it nor-
mally occurs. For this purpose the control sequences \string and \noexpand
are available.

The use of \string is rather limited, since it converts a control sequence
token into a string of characters, with the value of \escapechar used for the
character of category code 0. It is eminently suitable for use in a \write, in order
to output a control sequence name (see also Chapter 30); for another application
see the explanation of \newif in Chapter 13.

All characters resulting from \string have category code 12, ‘other’, except

12.4 Preventing expansion 137

for space characters; they receive code 10. See also Chapter 3.

12.4.1 \noexpand

The \noexpand command is expandable, and its expansion is the following
token. The meaning of that token is made temporarily equal to \relax, so that
it cannot be expanded further.

For \noexpand the most important application is probably in \edef com-
mands (but in write statements it can often replace \string). Consider as an
example

\edef\one{\def\noexpand\two{\the\prevdepth}}

Without the \noexpand, TEX would try to expand \two, thus giving an ‘undefined
control sequence’ error.

A (rather pointless) illustration of the fact that \noexpand makes the fol-
lowing token effectively into a \relax is

\def\a{b}
\noexpand\a

This will not produce any output, because the effect of the \noexpand is to make
the control sequence \a temporarily equal to \relax.

12.4.2 \noexpand and active characters

The combination \noexpand⟨token⟩ is equivalent to \relax, even if the to-
ken is an active character. Thus,

\csname\noexpand~\endcsname

will not be the same as \char`\~. Instead it will give an error message, be-
cause unexpandable commands – such as \relax – are not allowed to appear in
between \csname and \endcsname. The solution is to use \string instead; see
page 145 for an example.

In another context, however, the sequence \noexpand⟨active character⟩ is
equivalent to the character, but in unexpandable form. This is when the condi-
tionals \if and \ifcat are used (for an explanation of these, see Chapter 13).
Compare

\if\noexpand~\relax % is false

where the character code of the tilde is tested, with
\def\a{ ... } \if\noexpand\a\relax % is true

where two control sequences are tested.

138 第 12 章 Expansion

12.5 \relax

The control sequence \relax cannot be expanded, but when it is executed
nothing happens.

This statement sounds a bit paradoxical, so consider an example. Let coun-
ters

\newcount\MyCount
\newcount\MyOtherCount \MyOtherCount=2

be given. In the assignment
\MyCount=1\number\MyOtherCount3\relax4

the command \number is expandable, and \relax is not. When TEX constructs
the number that is to be assigned it will expand all commands, either until a
non-digit is found, or until an unexpandable command is encountered. Thus
it reads the 1; it expands the sequence \number\MyOtherCount, which gives 2;
it reads the 3; it sees the \relax, and as this is unexpandable it halts. The
number to be assigned is then 123, and the whole call has been expanded into

\MyCount=123\relax4

Since the \relax token has no effect when it is executed, the result of this line
is that 123 is assigned to \MyCount, and the digit 4 is printed.

Another example of how \relax can be used to indicate the end of a com-
mand is

\everypar{\hskip 0cm plus 1fil }
\indent Later that day, ...

This will be misunderstood: TEX will see
\hskip 0cm plus 1fil L

and fil L is a valid, if bizarre, way of writing fill (see Chapter 36). One
remedy is to write

\everypar{\hskip 0cm plus 1fil\relax}

12.5.1 \relax and \csname

If a \csname ... \endcsname command forms the name of a previously
undefined control sequence, that control sequence is made equal to \relax, and
the whole statement is also equivalent to \relax (see also page 122).

However, this assignment of \relax is only local:
{\xdef\test{\expandafter\noexpand\csname xx\endcsname}}
\test

gives an error message for an undefined control sequence \xx.
Consider as an example the LATEX environments, which are delimited by

12.5 \relax 139

\begin{...} ... \end{...}

The begin and end commands are (in essence) defined as follows:
\def
\begin#1{\begingroup\csname#1\endcsname}
\def\end#1{\csname end#1\endcsname \endgroup}

Thus, for the list environment the commands \list and \endlist are defined,
but any command can be used as an environment name, even if no correspond-
ing \end... has been defined. For instance,

\begin{it} ... \end{it}

is equivalent to
\begingroup\it ... \relax\endgroup

See page 113 for the rationale behind using \begingroup and \endgroup instead
of \bgroup and \egroup.

12.5.2 Preventing expansion with \relax

Because \relax cannot be expanded, a control sequence can be prevented
from being expanded (for instance in an \edef or a \write) by making it tem-
porarily equal to \relax:

{\let\somemacro=\relax \write\outfile{\somemacro}}

will write the string ‘\somemacro’ to an output file. It would write the expansion
of the macro \somemacro (or give an error message if the macro is undefined) if
the \let statement had been omitted.

12.5.3 TEX inserts a \relax

TEX itself inserts \relax on some occasions. For instance, \relax is in-
serted if TEX encounters an \or, \else, or \fi while still determining the extent
of the test.

例子：

\ifvoid1\else ... \fi

is changed into

\ifvoid1\relax \else ...\fi

internally.

Similarly, if one of the tests \if, \ifcat is given only one comparand, as in
\if1\else ...

a \relax token is inserted. Thus this test is equivalent to
\if1\relax\else ...

140 第 12 章 Expansion

Another place where \relax is used is the following. While a control se-
quence is being defined in a ⟨shorthand definition⟩ – that is, a ⟨registerdef⟩ or
\chardef or \mathchardef – its meaning is temporarily made equal to \relax.
This makes it possible to write \chardef\foo=123\foo.

12.5.4 The value of non-macros; \the

Expansion is a precisely defined activity in TEX. The full list of tokens that
can be expanded was given above. Other tokens than those in the above list
may have an ‘expansion’ in an informal sense. For instance one may wish to
‘expand’ the \parindent into its value, say 20pt.

Converting the value of (among others) an ⟨integer parameter⟩, a ⟨glue pa-
rameter⟩, ⟨dimen parameter⟩ or a ⟨token parameter⟩ into a string of character
tokens is done by the expansion processor. The command \the is expanded
whenever expansion is not inhibited, and it takes the value of various sorts of
parameters. Its result (in most cases) is a string of tokens of category 12, except
that spaces have category code 10.

Here is the list of everything that can be prefixed with \the.

⟨parameter⟩ or ⟨register⟩ If the parameter or register is of type integer, glue,
dimen or muglue, its value is given as a string of character tokens; if it is
of type token list (for instance \everypar or \toks5), the result is a string
of tokens. Box registers are excluded here.

⟨codename⟩⟨8-bit number⟩ See page 48.

⟨special register⟩ The integer registers \prevgraf, \deadcycles, \insertpenalties
\inputlineno, \badness, \parshape, \spacefactor (only in horizontal mode),
or \prevdepth (only in vertical mode). The dimension registers \pagetotal,
\pagegoal, \pagestretch,
\pagefilstretch, \pagefillstretch, \pagefilllstretch, \pageshrink, or
\pagedepth.

Font properties: \fontdimen⟨parameter number⟩⟨font⟩, \skewchar⟨font⟩, \hy-
phenchar⟨font⟩.

Last quantities: \lastpenalty, \lastkern, \lastskip.

⟨defined character⟩ Any control sequence defined by \chardef or \mathchardef;
the result is the decimal value.

In some cases \the can give a control sequence token or list of such tokens.

⟨font⟩ The result is the control sequence that stands for the font.

⟨token variable⟩ Token list registers and ⟨token parameter⟩s can be prefixed

12.6 Examples 141

with \the; the result is their contents.

Let us consider an example of the use of \the. If in a file that is to be \input
the category code of a character, say the at sign, is changed, one could write

\edef\restorecat{\catcode`@=\the\catcode`@}

and call \restorecat at the end of the file. If the category code was 11, \restorecat
is defined equivalent to

\catcode`@=11

See page 145 for more elaborate macros for saving and restoring catcodes.

12.6 Examples

12.6.1 Expanding after

The most obvious use of \expandafter is to reach over a control sequence:
\def\stepcounter

#1{\expandafter\advance\csname
#1:counter\endcsname 1\relax}

\stepcounter{foo}

Here the \expandafter lets the \csname command form the control sequence
\foo:counter; after \expandafter is finished the statement has reduced to

\advance\foo:counter 1\relax

It is possible to reach over tokens other than control sequences: in
\uppercase\expandafter{\romannumeral \year}

it expands \romannumeral on the other side of the opening brace.
You can expand after two control sequences:
\def\globalstepcounter

#1{\expandafter\global\expandafter\advance
\csname #1:counter\endcsname 1\relax}

If you think of \expandafter as reversing the evaluation order of two control
sequences, you can reverse three by

\expandafter\expandafter\expandafter\a\expandafter\b\c

which reaches across the three control sequences
\expandafter \a \b

to expand \c first.
There is even an unexpected use for \expandafter in conditionals; with
\def\bold#1{{\bf #1}}

the sequence
\ifnum1>0 \bold \fi {word}

will not give a boldface ‘word’, but

142 第 12 章 Expansion

\ifnum1>0 \expandafter\bold \fi {word}

will. The \expandafter lets TEX see the \fi and remove it before it tackles the
macro \bold (see also page 156).

12.6.2 Defining inside an \edef

There is one TEX command that is executed instead of expanded that is
worth pointing out explicitly: the primitive command \def (and all other ⟨def⟩
commands) is not expanded.

Thus the call
\edef\next{\def\thing{text}}

will give an ‘undefined control sequence’ for \thing, even though after \def
expansion is ordinarily inhibited (see page 132). After

\edef\next{\def\noexpand\thing{text}}

the ‘meaning’ of \next will be
macro: \def \thing {text}

The definition
\edef\next{\def\noexpand\thing{text}\thing}

will again give an ‘undefined control sequence’ for \thing (this time on its sec-
ond occurrence), as it will only be defined when \next is called, not when \next
is defined.

12.6.3 Expansion and \write

The argument token list of \write is treated in much the same way as
the replacement text of an \edef; that is, expandable control sequences and
active characters are completely expanded. Unexpandable control sequences
are treated by \write as if they are prefixed by \string.

Because of the expansion performed by \write, some care has to be taken
when outputting control sequences with \write. Even more complications arise
from the fact that the expansion of the argument of \write is only performed
when it is shipped out. Here follows a worked-out example.

Suppose \somecs is a macro, and you want to write the string

\def\othercs{the expansion of \somecs}

to a file.
The first attempt is
\write\myfile{\def\othercs{\somecs}}

12.6 Examples 143

This gives an error ‘undefined control sequence’ for \othercs, because the \write
will try to expand that token. Note that the \somecs is also expanded, so that
part is right.

The next attempt is
\write\myfile{\def\noexpand\othercs{\somecs}}

This is almost right, but not quite. The statement written is

\def\othercs{expansion of \somecs}

which looks right.
However, writes – and the expansion of their argument – are not executed

on the spot, but saved until the part of the page on which they occur is shipped
out (see Chapter 30). So, in the meantime, the value of \somecs may have
changed. In other words, the value written may not be the value at the time
the \write command was given. Somehow, therefore, the current expansion
must be inserted in the write command.

The following is an attempt at repair:
\edef\act{\write\myfile{\def\noexpand\othercs{\somecs}}}
\act

Now the write command will be

\write\myfile{\def\othercs{value of \somecs}}

The \noexpand prevented the \edef from expanding the \othercs, but after the
definition it has disappeared, so that execution of the write will again give an
undefined control sequence. The final solution is

\edef\act{\write\myfile
{\def \noexpand\noexpand \noexpand\othercs{\somecs}}}

\act

In this case the write command caused by the expansion of \act will be

\write\myfile{\def\noexpand\othercs{current value of \somecs}

and the string actually written is

\def\othercs{current value of \somecs}

This mechanism is the basis for cross-referencing macros in several macro pack-
ages.

12.6.4 Controlled expansion inside an \edef

Sometimes you may need an \edef to evaluate current conditions, but you
want to expand something in the replacement text only to a certain level. Sup-
pose that

\def\a{\b} \def\b{c} \def\d{\e} \def\e{f}

144 第 12 章 Expansion

is given, and you want to define \g as \a expanded one step, followed by \d fully
expanded. The following works:

\edef\g{\expandafter\noexpand\a \d}

Explanation: the \expandafter reaches over the \noexpand to expand \a one
step, after which the sequence \noexpand\b is left.

This trick comes in handy when you need to construct a control sequence
with \csname inside an \edef. The following sequence inside an \edef

\expandafter\noexpand\csname name\endcsname

will expand exactly to \name, but not further. As an example, suppose
\def\condition{true}

has been given, then
\edef\setmycondition{\expandafter\noexpand

\csname mytest\condition\endcsname}

will let \setmycondition expand to \mytesttrue.

12.6.5 Multiple prevention of expansion

As was pointed out above, prefixing a command with \noexpand prevents
its expansion in commands such as \edef and \write. However, if a sequence of
tokens passes through more than one expanding command stronger measures
are needed.

The following trick can be used: in order to protect a command against
expansion it can be prefixed with \protect. During the stages of processing
where expansion is not desired the definition of \protect is

\def\protect{\noexpand\protect\noexpand}

Later on, when the command is actually needed, \protect is defined as
\def\protect{}

Why does this work? The expansion of
\protect\somecs

is at first
\noexpand\protect\noexpand\somecs

Inside an \edef this sequence is expanded further, and the subsequent expan-
sion is

\protect\somecs

That is, the expansion is equal to the original sequence.

12.6 Examples 145

12.6.6 More examples with \relax

Above, a first example was given in which \relax served to prevent TEX
from scanning too far. Here are some more examples, using \relax to bound
numbers.

After
\countdef\pageno=0 \pageno=1
\def\Par{\par\penalty200}

the sequence
\Par\number\pageno

is misunderstood as
\par\penalty2001

In this case it is sufficient to define
\def\Par{\par\penalty200 }

as an ⟨optional space⟩ is allowed to follow a number.
Sometimes, however, such a simple escape is not possible. Consider the

definition
\def\ifequal#1#2{\ifnum#1=#2 1\else 0\fi}

The question is whether the space after #2 is necessary, superfluous, or simply
wrong. Calls such as \ifequal{27}{28} that compare two numbers (denota-
tions) will correctly give 1 or 0, and the space is necessary to prevent misinter-
pretation.

However, \ifequal\somecounter\othercounter will give 1 if the counters
are equal; in this case the space could have been dispensed with. The solution
that works in both cases is

\def\ifequal#1#2{\ifnum#1=#2\relax 1\else 0\fi}

Note that \relax is not expanded, so
\edef\foo{1\ifequal\counta\countb}

will define \foo as either 1\relax1 or 10.

12.6.7 Example: category code saving and restoring

In many applications it is necessary to change the category code of a certain
character during the execution of some piece of code. If the writer of that code
is also the writer of the surrounding code, s/he can simply change the category
code back and forth. However, if the surrounding code is by another author,
the value of the category code will have to be stored and restored.

Thus one would like to write

146 第 12 章 Expansion

\storecat@
... some code ...
\restorecat@

or maybe
\storecat\%

for characters that are possibly a comment character (or ignored or invalid).
The basic idea is to define

\def\storecat#1{%
\expandafter\edef\csname restorecat#1\endcsname

{\catcode`#1=\the\catcode`#1}}

so that, for instance, \storecat$will define the single control sequence ‘\restorecat$’
(one control sequence) as

\catcode`$=3

The macro \restorecat can then be implemented as
\def\restorecat#1{%

\csname restorecat#1\endcsname}

Unfortunately, things are not so simple.

The problems occur with active characters, because these are expanded in-
side the \csname ... \endcsname pairs. One might be tempted to write \noexpand#1
everywhere, but this is wrong. As was explained above, this is essentially equal
to \relax, which is unexpandable, and will therefore lead to an error message
when it appears between \csname and \endcsname. The proper solution is then
to use \string#1. For the case where the argument was given as a control sym-
bol (for example \%), the escape character has to be switched off for a while.

Here are the complete macros. The \storecat macro gives its argument a
default category code of 12.

\newcount\tempcounta % just a temporary
\def\csarg#1#2{\expandafter#1\csname#2\endcsname}
\def\storecat#1%

{\tempcounta\escapechar \escapechar=-1
\csarg\edef{restorecat\string#1}%

{\catcode`\string#1=
\the\catcode\expandafter`\string#1}%

\catcode\expandafter`\string#1=12\relax
\escapechar\tempcounta}

\def\restorecat#1%
{\tempcounta\escapechar \escapechar=-1
\csname restorecat\string#1\endcsname
\escapechar\tempcounta}

12.6 Examples 147

12.6.8 Combining \aftergroup and boxes

At times, one wants to construct a box and immediately after it has been
constructed to do something with it. The \aftergroup command can be used
to put both the commands creating the box, and the ones handling it, in one
macro.

As an example, here is a macro \textvcenter which defines a variant of
the \vcenter box (see page 221) that can be used outside math mode.

\def\textvcenter
{\hbox \bgroup$\everyvbox{\everyvbox{}%
\aftergroup$\aftergroup\egroup}\vcenter}

The idea is that the macro inserts \hbox {$, and that the matching $} gets
inserted by the \aftergroup commands. In order to get the \aftergroup com-
mands inside the box, an \everyvbox command is used.

This macro can even be used with a ⟨box specification⟩ (see page 57), for
example

\textvcenter spread 8pt{\hbox{a}\vfil\hbox{b}}

and because it is really just an \hbox, it can also be used in a \setbox assign-
ment.

12.6.9 More expansion

There is a particular charm to macros that work purely by expansion. See
the articles by [11], [16], and [32].

第 13 章 Conditionals

Conditionals are an indispensible tool for powerful macros. TEX has a large
repertoire of conditionals for querying such things as category codes or process-
ing modes. This chapter gives an inventory of the various conditionals, and it
treats the evaluation of conditionals in detail.

\if Test equality of character codes.

\ifcat Test equality of category codes.

\ifx Test equality of macro expansion, or equality of character code and
category code.

\ifcase Enumerated case statement.

\ifnum Test relations between numbers.

\ifodd Test whether a number is odd.

\ifhmode Test whether the current mode is (possibly restricted) horizontal
mode.

\ifvmode Test whether the current mode is (possibly internal) vertical mode.

\ifmmode Test whether the current mode is (possibly display) math mode.

\ifinner Test whether the current mode is an internal mode.

\ifdim Compare two dimensions.

\ifvoid Test whether a box register is empty.

\ifhbox Test whether a box register contains a horizontal box.

\ifvbox Test whether a box register contains a vertical box.

\ifeof Test for end of input stream or non-existence of file.

\iftrue A test that is always true.

\iffalse A test that is always false.

\fi Closing delimiter for all conditionals.

\else Select ⟨false text⟩ of a conditional or default case of \ifcase.

148

13.1 The shape of conditionals 149

\or Separator for entries of an \ifcase.

\newif Create a new test.

13.1 The shape of conditionals
Conditionals in TEX have one of the following two forms

\if...⟨test tokens⟩⟨true text⟩\fi
\if...⟨test tokens⟩⟨true text⟩\else⟨false text⟩\fi

where the ⟨test tokens⟩ are zero or more tokens, depending on the particular
conditional; the ⟨true text⟩ is a series of tokens to be processed if the test turns
out true, and the ⟨false text⟩ is a series of tokens to be processed if the test turns
out false. Both the ⟨true text⟩ and the ⟨false text⟩ can be empty.

The exact process of how TEX expands conditionals is treated below.

13.2 Character and control sequence tests
Three tests exist for testing character tokens and control sequence tokens.

13.2.1 \if

Equality of character codes can be tested by

\if⟨token1⟩⟨token2⟩
In order to allow the tokens to be control sequences, TEX assigns character
code 256 to control sequences, the lowest positive number that is not the charac-
ter code of a character token (remember that the legal character codes are 0–255).

Thus all control sequences are equal as far as \if is concerned, and they
are unequal to all character tokens. As an example, this fact can be used to
define

\def\ifIsControlSequence#1{\if\noexpand#1\relax}

which tests whether a token is a control sequence token instead of a character
token (its result is unpredictable if the argument is a {...} group).

After \ifTEX will expand until two unexpandable tokens are obtained, so it
is necessary to prefix expandable control sequences and active characters with
\noexpand when testing them with \if.

例子：After

\catcode`\b=13 \catcode`\c=13 \def b{a} \def c{a} \let\d=a

we find that

150 第 13 章 Conditionals

\if bc is true, because both b and c expand to a,
\if\noexpand b\noexpand c is false, and
\if b\d is true because b expands to the character a, and \d is an im-
plicit character token a.

13.2.2 \ifcat

The \if test ignores category codes; these can be tested by

\ifcat⟨token1⟩⟨token2⟩
This test is a lot like \if: TEX expands after it until unexpandable tokens

remain. For this test control sequences are considered to have category code 16
(ordinarily, category codes are in the range 0–15), which makes them all equal
to each other, and different from all character tokens.

13.2.3 \ifx

Equality of tokens is tested in a stronger sense than the above by

\ifx⟨token1⟩⟨token2⟩

• Character tokens are equal for \ifx if they have the same character code
and category code.

• Control sequence tokens are equal if they represent the same TEX primi-
tive, or have been similarly defined by \font, \countdef, or some such. For
example,

\let\boxhor=\hbox \ifx\boxhor\hbox %is true
\font\a=cmr10 \font\b=cmr10 \ifx\a\b %is true

• Control sequences are also equal if they are macros with the same param-
eter text and replacement text, and the same status with respect to \outer
and \long. For example,

\def\a{z} \def\b{z} \def\c1{z} \def\d{\a}
\ifx\a\b %is true
\ifx\a\c %is false
\ifx\a\d %is false

Tokens following this test are not expanded.
By way of example of the use of \ifx consider string testing. A simple

implementation of string testing in TEX is as follows:
\def\ifEqString#1#2{\def\testa{#1}\def\testb{#2}%

\ifx\testa\testb}

The two strings are used as the replacement text of two macros, and equality of
these macros is tested. This is about as efficient as string testing can get: TEX

13.3 Mode tests 151

will traverse the definition texts of the macros \testa and \testb, which has
precisely the right effect.

As another example, one can test whether a control sequence is defined by
\def\ifUnDefinedCs#1{\expandafter

\ifx\csname#1\endcsname\relax}
\ifUnDefinedCs{parindent} %is not true
\ifUnDefinedCs{undefined} %is (one hopes) true

This uses the fact that a \csname...\endcsname command is equivalent to \relax
if the control sequence has not been defined before. Unfortunately, this test also
turns out true if a control sequence has been \let to \relax.

13.3 Mode tests

In order to determine in which of the six modes (see Chapter 6) TEX is
currently operating, the tests \ifhmode, \ifvmode, \ifmmode, and \ifinner are
available.

• \ifhmode is true if TEX is in horizontal mode or restricted horizontal mode.

• \ifvmode is true if TEX is in vertical mode or internal vertical mode.

• \ifmmode is true if TEX is in math mode or display math mode.

The \ifinner test is true if TEX is in any of the three internal modes: re-
stricted horizontal mode, internal vertical mode, and non-display math mode.

See also chapter 6.

13.4 Numerical tests

Numerical relations between ⟨number⟩s can be tested with

\ifnum⟨number1⟩⟨relation⟩⟨number2⟩

where the relation is a character <, =, or >, of category 12.
Quantities such as glue can be used as a number here through the con-

version to scaled points, and TEX will expand in order to arrive at the two
⟨number⟩s.

Testing for odd or even numbers can be done with \ifodd: the test

\ifodd⟨number⟩

is true if the ⟨number⟩ is odd.

152 第 13 章 Conditionals

13.5 Other tests

13.5.1 Dimension testing

Relations between ⟨dimen⟩ values (Chapter 8) can be tested with \ifdim
using the same three relations as in \ifnum.

13.5.2 Box tests

Contents of box registers (Chapter 5) can be tested with

\ifvoid⟨8-bit number⟩

which is true if the register contains no box,

\ifhbox⟨8-bit number⟩

which is true if the register contains a horizontal box, and

\ifvbox⟨8-bit number⟩

which is true if the register contains a vertical box.

13.5.3 I/O tests

The status of input streams (Chapter 30) can be tested with the end-of-file
test \ifeof⟨number⟩, which is only false if the number is in the range 0–15,
and the corresponding stream is open and not fully read. In particular, this
test is true if the file name connected to this stream (through \openin) does not
correspond to an existing file. See the example on page 269.

13.5.4 Case statement

The TEX case statement is called \ifcase; its syntax is

\ifcase⟨number⟩⟨case0⟩\or...\or⟨casen⟩\else⟨other cases⟩\fi

where for n cases there are n−1 \or control sequences. Each of the ⟨casei⟩ parts
can be empty, and the \else⟨other cases⟩ part is optional.

13.5.5 Special tests

The tests \iftrue and \iffalse are always true and false respectively.
They are mainly useful as tools in macros.

For instance, the sequences
\iftrue{\else}\fi

and

13.6 The \newif macro 153

\iffalse{\else}\fi

yield a left and right brace respectively, but they have balanced braces, so they
can be used inside a macro replacement text.

The \newif macro, treated below, provides another use of \iftrue and
\iffalse. On page 260 of the TEX book these control sequences are also used
in an interesting manner.

13.6 The \newif macro
The plain format defines an (outer) macro \newif by which the user can

define new conditionals. If the user defines
\newif\iffoo

TEX defines three new control sequences, \footrue and \foofalse with which
the user can set the condition, and \iffoo which tests the ‘foo’ condition.

The macro call \newif\iffoo expands to
\def\footrue{\let\iffoo=\iftrue} \def\foofalse{\let\iffoo=\iffalse}
\foofalse

The actual definition, especially the part that ensures that the \iffoo indeed
starts with \if, is a pretty hack. An explanation follows here. This uses con-
cepts from Chapters 11 and 12.

The macro \newif starts as follows:
\outer\def\newif#1{\count@\escapechar \escapechar\m@ne

This saves the current escape character in \count@, and sets the value of \escapechar
to -1. The latter action has the effect that no escape character is used in the
output of \string⟨control sequence⟩.

An auxiliary macro \if@ is defined by
{\uccode`1=`i \uccode`2=`f \uppercase{\gdef\if@12{}}}

Since the uppercase command changes only character codes, and not category
codes, the macro \if@ now has to be followed by the characters if of category 12.
Ordinarily, these characters have category code 11. In effect this macro then
eats these two characters, and TEX complains if they are not present.

Next there is a macro \@if defined by
\def\@if#1#2{\csname\expandafter\if@\string#1#2\endcsname}

which will be called like \@if\iffoo{true} and \@if\iffoo{false}.
Let us examine the call \@if\iffoo{true}.

• The \expandafter reaches over the \if@ to expand \string first. The part
\string\iffoo expands to iffoo because the escape character is not printed,
and all characters have category 12.

154 第 13 章 Conditionals

• The \if@ eats the first two characters i12f12 of this.

• As a result, the final expansion of \@if\iffoo{true} is then
\csname footrue\endcsname

Now we can treat the relevant parts of \newif itself:
\expandafter\expandafter\expandafter

\edef\@if#1{true}{\let\noexpand#1=\noexpand\iftrue}%

The three \expandafter commands may look intimidating, so let us take
one step at a time.

• One \expandafter is necessary to reach over the \edef, such that \@if will
expand:

\expandafter\edef\@if\iffoo{true}

gives
\edef\csname footrue\endcsname

• Then another \expandafter is necessary to activate the \csname:
\expandafter \expandafter \expandafter \edef \@if ...
% new old new

• This makes the final expansion
\edef\footrue{\let\noexpand\iffoo=\noexpand\iftrue}

After this follows a similar statement for the false case:
\expandafter\expandafter\expandafter
\edef\@if#1{false}{\let\noexpand#1=\noexpand\iffalse}%

The conditional starts out false, and the escape character has to be reset:
\@if#1{false}\escapechar\count@}

13.7 Evaluation of conditionals

TEX’s conditionals behave differently from those in ordinary programming
languages. In many instances one may not notice the difference, but in cer-
tain contexts it is important to know precisely the evaluation of conditionals
proceeds.

When TEX evaluates a conditional, it first determines what is to be tested.
This in itself may involve some expansion; as we saw in the previous chapter,
only after an \ifx test does TEX not expand. After all other tests TEX will
expand tokens until the extent of the test and the tokens to be tested have been
determined. On the basis of the outcome of this test the ⟨true text⟩ and the
⟨false text⟩ are either expanded or skipped.

13.8 Assorted remarks 155

For the processing of the parts of the conditional let us consider some cases
separately.

• \if... ... \fi and the result of the test is false. After the test TEX will
start skipping material without expansion, without counting braces, but
balancing nested conditionals, until a \fi token is encountered. If the \fi
is not found an error message results at the end of the file:

Incomplete \if...; all text was ignored after line ...

where the line number indicated is that of the line where TEX started skip-
ping, that is, where the conditional occurred.

• \if... \else ... \fi and the result of the test is false. Any material in
between the condition and the \else is skipped without expansion, without
counting braces, but balancing nested conditionals.
The \fi token can be the result of expansion; if it never turns up TEX will
give a diagnostic message

\end occurred when \if... on line ... was incomplete

This sort of error is not visible in the output.
This point plus the previous may jointly be described as follows: after a
false condition TEX skips until an \else or \fi is found; any material in
between \else and \fi is processed.

• \if... ... \fi and the result of the test is true. TEX will start process-
ing the material following the condition. As above, the \fi token may be
inserted by expansion of a macro.

• \if... \else ... \fi and the result of the test is true. Any material
following the condition is processed until the \else is found; then TEX skips
everything until the matching \fi is found.
This point plus the previous may be described as follows: after a true test
TEX starts processing material until an \else or \fi is found; if an \else
is found TEX skips until it finds the matching \fi.

13.8 Assorted remarks

13.8.1 The test gobbles up tokens

A common mistake is to write the following:

\ifnum\x>0\someaction \else\anotheraction \fi

156 第 13 章 Conditionals

which has the effect that the \someaction is expanded, regardless of whether
the test succeeds or not. The reason for this is that TEX evaluates the input
stream until it is certain that it has found the arguments to be tested. In this
case it is perfectly possible for the \someaction to yield a digit, so it is expanded.
The remedy is to insert a space or a \relax control sequence after the last digit
of the number to be tested.

13.8.2 The test wants to gobble up the \else or \fi

The same mechanism that underlies the phenomenon in the previous point
can lead to even more surprising effects if TEX bumps into an \else, \or, or \fi
while still busy determining the extent of the test itself.

Recall that \pageno is a synomym for \count0, and consider the following
examples:

\newcount\nct \nct=1\ifodd\pageno\else 2\fi 1

and
\newcount\nct \nct=1\ifodd\count0\else 2\fi 1

The first example will assign either 11 or 121 to \nct, but the second one will
assign 1 or 121. The explanation is that in cases like the second, where an \else
is encountered while the test still has not been delimited, a \relax is inserted.
In the case that \count0 is odd the result will thus be \relax, and the example
will yield

\nct=1\relax2

which will assign 1 to \nct, and print 2.

13.8.3 Macros and conditionals; the use of \expandafter

Consider the following example:
\def\bold#1{{\bf #1}} \def\slant#1{{\sl #1}}
\ifnum1>0 \bold \else \slant \fi {some text} ...

This will make not only ‘some text’, but all subsequent text bold. Also, at the
end of the job there will be a notice that ‘end occurred inside a group at level 1’.
Switching on \tracingmacros reveals that the argument of \bold was \else.
This means that, after expansion of \bold, the input stream looked like

\ifnum1>0 {\bf \else }\fi {some text} rest of the text

so the closing brace was skipped as part of the ⟨false text⟩. Effectively, then,
the resulting stream is

{\bf {some text} rest of the text

which is unbalanced.

13.8 Assorted remarks 157

One solution to this sort of problem would be to write
\ifnum1>0 \let\next=\bold \else \let\next=\slant \fi \next

but a solution using \expandafter is also possible:
\ifnum1>0 \expandafter \bold \else \expandafter \slant \fi

This works, because the \expandafter commands let TEX determine the bound-
aries of the ⟨true text⟩ and the ⟨false text⟩.

In fact, the second solution may be preferred over the first, since condition-
als are handled by the expansion processor, and the \let statements are tack-
led only by the execution processor; that is, they are not expandable. Thus the
second solution will (and the first will not) work, for instance, inside an \edef.

Another example with \expandafter is the sequence
\def\get#1\get{ ... }
\expandafter \get \ifodd1 \ifodd3 5\fi \fi \get

This gives
#1<- \ifodd3 5\fi \fi

and
\expandafter \get \ifodd2 \ifodd3 5\fi\fi \get

gives
#1<-

This illustrates again that the result of evaluating a conditional is not the fi-
nal expansion, but the start of the expansion of the ⟨true text⟩ or ⟨false text⟩,
depending on the outcome of the test.

A detail should be noted: with \expandafter it is possible that the \else is
encountered before the ⟨true text⟩ has been expanded completely. This raises
the question as to the exact timing of expansion and skipping. In the example

\def\hello{\message{Hello!}}
\ifnum1>0 \expandafter \hello \else \message{goodbye} \bye

the error message caused by the missing \fi is given without \hello ever hav-
ing been expanded. The conclusion must be that the ⟨false text⟩ is skipped as
soon as it has been located, even if this is at a time when the ⟨true text⟩ has not
been expanded completely.

13.8.4 Incorrect matching

TEX’s matching of \if, \else, and \fi is easily upset. For instance, the TEX
book warns you that you should not say

\let\ifabc=\iftrue

inside a conditional, because if this text is skipped TEX sees at least one \if to
be matched.

158 第 13 章 Conditionals

The reason for this is that when TEX is skipping it recognizes all \if...,
\or, \else, and \fi tokens, and everything that has been declared a synonym
of such a token by \let. In \let\ifabc=\iftrue TEX will therefore at least
see the \iftrue as the opening of a conditional, and, if the current meaning of
\ifabc was for instance \iffalse, it will also be considered as the opening of a
conditional statement.

As another example, if
\csname if\sometest\endcsname \someaction \fi

is skipped as part of conditional text, the \fiwill unintentionally close the outer
conditional.

It does not help to enclose such potentially dangerous constructs inside a
group, because grouping is independent of conditional structure. Burying such
commands inside macros is the safest approach.

Sometimes another solution is possible, however. The \loop macro of plain
TEX (see page 125) is used as

\loop ... \if ... \repeat

where the \repeat is not an actually executable command, but is merely a de-
limiter:

\def\loop#1\repeat{ ... }

Therefore, by declaring
\let\repeat\fi

the \repeat balances the \if... that terminates the loop, and it becomes pos-
sible to have loops in skipped conditional text.

13.8.5 Conditionals and grouping

It has already been mentioned above that group nesting in TEX is indepen-
dent of conditional nesting. The reason for this is that conditionals are handled
by the expansion part of TEX; in that stage braces are just unexpandable to-
kens that require no special treatment. Grouping is only performed in the later
stage of execution processing.

An example of this independence is now given. One may write a macro that
yields part of a conditional:

\def\elsepart{\else \dosomething \fi}

The other way around, the following macros yield a left brace and a right brace
respectively:

\def\leftbrace{\iftrue{\else}\fi}
\def\rightbrace{\iffalse{\else}\fi}

Note that braces in these definitions are properly nested.

13.8 Assorted remarks 159

13.8.6 A trick

In some contexts it may be hard to get rid of \else or \fi tokens in a proper
manner. The above approach with \expandafter works only if there is a limited
number of tokens involved. In other cases the following trick may provide a way
out:

\def\hop#1\fi{\fi #1}

Using this as

\if... \hop ⟨lots of tokens⟩\fi

will place the tokens outside the conditional. This is for instance used in [11].
As a further example of this sort of trick, consider the problem (suggested to

me and solved by Alan Jeffrey) of implementing a conditional \ifLessThan#1#2#3#4
such that the arguments corresponding to #3 or #4 result, depending on whether
#1 is less than #2 or not.

The problem here is how to get rid of the \else and the \fi. The – or at
least, one – solution is to scoop them up as delimiters for macros:

\def\ifLessThan#1#2{\ifnum#1<#2\relax\taketrue \else \takefalse \fi}
\def\takefalse\fi#1#2{\fi#2}
\def\taketrue\else\takefalse\fi#1#2{\fi#1}

Note that \ifLessThan has only two parameters (the things to be tested); how-
ever, its result is a macro that chooses between the next two arguments.

13.8.7 More examples of expansion in conditionals

Above, the macro \ifEqString was given that compares two strings:
\def\ifEqString#1#2%

{\def\csa{#1}\def\csb{#2}\ifx\csa\csb }

However, this macro relies on \def, which is not an expandable command. If we
need a string tester that will work, for instance, inside an \edef, we need some
more ingenuity (this solution was taken from [11]). The basic principle of this
solution is to compare the strings one character at a time. Macro delimiting by
\fi is used; this was explained above.

First of all, the \ifEqString call is replaced by a sequence \ifAllChars ...\Are ...\TheSame,
and both strings are delimited by a dollar sign, which is not supposed to appear
in the strings themselves.

\def\ifEqString
#1#2{\ifAllChars#1$\Are#2$\TheSame}

The test for equality of characters first determines whether either string has
ended. If both have ended, the original strings were equal; if only one has ended,

160 第 13 章 Conditionals

they were of unequal length, hence unequal. If neither string has ended, we test
whether the first characters are equal, and if so, we make a recursive call to test
the remainder of the string.

\def\ifAllChars#1#2\Are#3#4\TheSame
{\if#1$\if#3$\say{true}%

\else \say{false}\fi
\else \if#1#3\ifRest#2\TheSame#4\else

\say{false}\fi\fi}
\def\ifRest#1\TheSame#2\else#3\fi\fi

{\fi\fi \ifAllChars#1\Are#2\TheSame}

The \say macro is supposed to give \iftrue for \say{true} and \iffalse for
\say{false}. Observing that all calls to this macro occur two conditionals deep,
we use the ‘hop’ trick explained above as follows.

\def\say#1#2\fi\fi
{\fi\fi\csname if#1\endcsname}

Similar to the above example, let us write a macro that will test lexico-
graphic (‘dictionary’) precedence of two strings:

\let\ex=\expandafter
\def\ifbefore

#1#2{\ifallchars#1$\are#2$\before}
\def\ifallchars#1#2\are#3#4\before

{\if#1$\say{true\ex}\else
\if#3$\say{false\ex\ex\ex}\else
\ifnum`#1>`#3 \say{false%

\ex\ex\ex\ex\ex\ex\ex}\else
\ifnum`#1<`#3 \say{true%
\ex\ex\ex\ex\ex\ex\ex
\ex\ex\ex\ex\ex\ex\ex\ex}\else

\ifrest#2\before#4\fi\fi\fi\fi}
\def\ifrest#1\before#2\fi\fi\fi\fi

{\fi\fi\fi\fi
\ifallchars#1\are#2\before}

\def\say#1{\csname if#1\endcsname}

In this macro a slightly different implementation of \say is used.
Simplified, a call to \ifbefore will eventually lead to a situation that looks

(in the ‘true’ case) like
\ifbefore{...}{...}

\if... %% some comparison that turns out true
\csname iftrue\expandafter\endcsname

\else \fi
... %% commands for the `before' case

\else
... %% commands for the `not-before' case

\fi

13.8 Assorted remarks 161

When the comparison has turned out true, TEX will start processing the ⟨true
text⟩, and make a mental note to remove any \else ... \fi part once an \else
token is seen. Thus, the sequence

\csname iftrue\expandafter\endcsname \else ... \fi

is replaced by
\csname iftrue\endcsname

as the \else is seen while TEX is still processing \csname...\endcsname.
Calls to \say occur inside nested conditionals, so the number of \expandafter

commands necessary may be larger than 1: for level two it is 3, for level three
it is 7, and for level 4 it is 15. Slightly more compact implementations of this
macro do exist.

第 14 章 Token Lists

TEX has only one type of data structure: the token list There are token list
registers that are available to the user, and TEX has some special token lists:
the \every... variables, \errhelp, and \output.

\toks Prefix for a token list register.

\toksdef Define a control sequence to be a synonym for a \toks register.

\newtoks Macro that allocates a token list register.

14.1 Token lists

Token lists are the only type of data structure that TEX knows. They can
contain character tokens and control sequence tokens. Spaces in a token list are
significant. The only operations on token lists are assignment and unpacking.

TEX has 256 token list registers \toksnnn that can be allocated using the
macro \newtoks, or explicitly assigned by \toksdef; see below.

14.2 Use of token lists

Token lists are assigned by a ⟨variable assignment⟩, which is in this case
takes one of the forms

⟨token variable⟩⟨equals⟩⟨general text⟩
⟨token variable⟩⟨equals⟩⟨filler⟩⟨token variable⟩

Here a ⟨token variable⟩ is an explicit \toksnnn register, something that has
been defined to such a register by \toksdef (probably hidden in \newtoks), or
one of the special ⟨token parameter⟩ lists below. A ⟨general text⟩ has an explicit
closing brace, but the open brace can be implicit.

Examples of token lists are (the first two lines are equivalent):

162

14.3 ⟨token parameter⟩ 163

\toks0=\bgroup \a \b cd}
\toks0={\a \b cd}
\toks1=\toks2

Unpacking a token list is done by the command \the: the expansion of
\the⟨token variable⟩ is the sequence of tokens that was in the token list.

Token lists have a special behaviour in \edef: when prefixed by \the they
are unpacked, but the resulting tokens are not evaluated further. Thus

\toks0={\a \b} \edef\SomeCs{\the\toks0}

gives
\SomeCs: macro:-> \a \b

This is in contrast to what happens ordinarily in an \edef; see page 133.

14.3 ⟨token parameter⟩

There are in TEX a number of token lists that are automatically inserted
at certain points. These ⟨token parameter⟩s are the following:

\output this token list is inserted whenever TEX decides it has sufficient ma-
terial for a page, or when the user forces activation by a penalty ≤ −10 000

in vertical mode (see Chapter 28);

\everypar is inserted when TEX switches from external or internal vertical
mode to unrestricted horizontal mode (see Chapter 16);

\everymath is inserted after a single math-shift character that starts a formula;

\everydisplay is inserted after a double math-shift character that starts a dis-
play formula;

\everyhbox is inserted when an \hbox begins (see Chapter 5);

\everyvbox is inserted when a vertical box begins (see Chapter 5);

\everyjob is inserted when a job begins (see Chapter 32);

\everycr is inserted in alignments after \cr or a non-redundant \crcr (see
Chapter 25);

\errhelp contains tokens to supplement an \errmessage (see Chapter 35).

A ⟨token parameter⟩ behaves the same as an explicit \toksnnn list, or a
quantity defined by \toksdef.

14.4 Token list registers

Token lists can be stored in \toks registers:

164 第 14 章 Token Lists

\toks⟨8-bit number⟩

which is a ⟨token variable⟩. Synonyms for token list registers can be made by
the ⟨registerdef⟩ command \toksdef in a ⟨shorthand definition⟩:

\toksdef⟨control sequence⟩⟨equals⟩⟨8-bit number⟩

A control sequence defined this way is called a ⟨toksdef token⟩, and this is also
a token variable (the remaining third kind of token variable is the ⟨token pa-
rameter⟩).

The plain TEX macro \newtoks uses \toksdef to allocate unused token list
registers. This macro is \outer.

14.5 Examples
Token lists are probably among the least obvious components of TEX: most

TEX users will never find occasion for their use, but format designers and other
macro writers can find interesting applications. Following are some examples
of the sorts of things that can be done with token lists.

14.5.1 Operations on token lists: stack macros

The number of primitive operations available for token lists is rather lim-
ited: assignment and unpacking. However, these are sufficient to implement
other operations such as appending.

Let us say we have allocated a token register
\newtoks\list \list={\c}

and we want to add tokens to it, using the syntax
\Prepend \a \b (to:)\list

such that
\showthe\list

gives
> \a \b \c .

For this the original list has to be unpacked, and the new tokens followed by
the old contents have to assigned again to the register. Unpacking can be done
with \the inside an \edef, so we arrive at the following macro:

\def\Prepend#1(to:)#2{\toks0={#1}%
\edef\act{\noexpand#2={\the\toks0 \the#2}}%
\act}

Note that the tokens that are to be added are first packed into a temporary token
list, which is then again unpacked inside the \edef. Including them directly

14.5 Examples 165

would have led to their expansion.
Next we want to use token lists as a sort of stack: we want a ‘pop’ operation

that removes the first element from the list. Specifically,
\Pop\list(into:)\first
\show\first \showthe\list

should give
> \first=macro:
->\a .

and for the remaining list

> \b \c .

Here we make creative use of delimited and undelimited parameters. With
an \edef we unpack the list, and the auxiliary macro \SplitOff scoops up the
elements as one undelimited argument, the first element, and one delimited
argument, the rest of the elements.

\def\Pop#1(into:)#2{%
\edef\act{\noexpand\SplitOff\the#1%

(head:)\noexpand#2(tail:)\noexpand#1}%
\act}

\def\SplitOff#1#2(head:)#3(tail:)#4{\def#3{#1}#4={#2}}

14.5.2 Executing token lists

The \the operation for unpacking token lists was used above only inside an
\edef. Used on its own it has the effect of feeding the tokens of the list to TEX’s
expansion mechanism. If the tokens have been added to the list in a uniform
syntax, this gives rise to some interesting possibilities.

Imagine that we are implementing the bookkeeping of external files for a
format. Such external files can be used for table of contents, list of figures, et
cetera. If the presence of such objects is under the control of the user, we need
some general routines for opening and closing files, and keeping track of what
files we have opened at the user’s request.

Here only some routines for bookkeeping will be described. Let us say there
is a list of auxiliary files, and an auxiliary counter:

\newtoks\auxlist \newcount\auxcount

First of all there must be an operation to add auxiliary files:
\def\NewAuxFile#1{\AddToAuxList{#1}%

% plus other actions
}

\def\AddToAuxList#1{\let\\=\relax

166 第 14 章 Token Lists

\edef\act{\noexpand\auxlist={\the\auxlist \\{#1}}}%
\act}

This adds the name to the list in a uniform format:
\NewAuxFile{toc} \NewAuxFile{lof}
\showthe\auxlist
> \\{toc}\\{lof}.

using the control sequence \\ which is left undefined.
Now this control sequence can be used for instance to count the number of

elements in the list:
\def\ComputeLengthOfAuxList{\auxcount=0

\def\\##1{\advance\auxcount1\relax}%
\the\auxlist}

\ComputeLengthOfAuxList \showthe\auxcount
> 2.

Another use of this structure is the following: at the end of the job we can now
close all auxiliary files at once, by

\def\CloseAuxFiles{\def\\##1{\CloseAuxFile{##1}}%
\the\auxlist}

\def\CloseAuxFile#1{\message{closing file: #1. }%
% plus other actions
}

\CloseAuxFiles

which gives the output
closing file: toc. closing file: lof.

第 15 章 基线距离

文本行的高度和深度多半不会是相等的。因此 TEX 添加行间粘连，以保证各
行基线有一致的距离。这一章处理行间粘连的计算。

\baselineskip 竖直列中相邻盒子基线距离的 ‘理想值’。Plain TEX默认为 12pt。

\lineskiplimit 竖直列中相邻盒子的底部和顶部需要保持的距离。Plain TEX默
认为 0pt。

\lineskip 在相邻盒子的底部和顶部的距离小于 \lineskiplimit时添加的粘连。
Plain TEX默认为 1pt。

\prevdepth 上一个被 TEX添加到竖直列的盒子的深度。

\nointerlineskip 用于阻止一次行间粘连插入的宏。

\offinterlineskip 用于全局地阻止此后所有行间粘连的宏。

\openup 给 \baselineskip、\lineskip和 \lineskiplimit增加指定的量。

15.1 行间粘连

通过插入行间粘连，TEX试图让竖直列的盒子的基准点保持一定的距离。特别
地，它试图让普通文本的各行保持恒定的基线距离。实际上，\baselineskip是一
个 ⟨glue⟩，因此行距是可以伸缩的。然而，它的自然尺寸以及伸长量和收缩量，在
各行之间是一致的。

当添加盒子——不管是段落文本行还是显式盒子——到竖直列时，TEX通常会
添加粘连，使得它与前面盒子深度和当前盒子高度之和等于 \baselineskip。这样
能让各行的基准点保持相同的距离。

167

168 第 15 章 基线距离

↑

height of the first line

↓
↑
depth of the first line↓

↑
interline glue↓

↑
lineskip limit↓

↑
height of the second line
↓
↑depth of the second line↓

↑

Baselineskip

↓

然而，这样做可能导致相邻盒子的底部和顶部的距离小于 \lineskiplimit：

↑
depth of the first line
↓

↑
lineskip limit↓↑

height of the second line

↓

↑

Baselineskip

↓
碰到这种情形时，TEX改为添加 \lineskip粘连：

↑
depth of the first line
↓

↑lineskip glue↓
↑

height of the second line

↓

↑

???

↓
注意这通常会导致盒子的基线距离超过 \baselineskip。
确切的处理过程如下：

• 如果 \prevdepth小于或等于 -1000pt，不会添加任何粘连，否则

• TEX 计算出上一个盒子底部和当前盒子顶部的距离：它用 \baselineskip 减
去 \prevdepth（上一个盒子的深度）再减去当前盒子的高度；

• 如果这个距离小于 \lineskiplimit，TEX 添加一个粘连，这个粘连的自然尺
寸等于该距离，伸长量和收缩量等于 \baselineskip的伸长量和收缩量。

• 否则，TEX改为添加 \lineskip粘连。

• TEX将 \prevdepth设为当前项目的深度。

这里有两个例外情形：在标尺前后不添加行间粘连，而 \unvbox或 \unvcopy
命令不改变 \prevdepth值。在标线之后行间粘连是由于 \prevdepth等于 -1000pt
而被阻止。

15.2 盒子深度 169

上面的处理过程不考虑盒子间另外插入的粘连。因此竖直模式中添加的盒子间
距不会影响从基线距离算出的结果，从而不影响行间粘连的大小。这个规则也适用
于在段落中用 \vadjust添加的粘连。

例子：

\baselineskip=10pt \lineskiplimit=2pt \lineskip=2pt
\setbox0=\vbox{\hbox{\vrule depth4pt}

\hbox{\vrule height 3pt}}
\showbox0

将给出

\box0=
\vbox(10.0+0.0)x0.4
.\hbox(0.0+4.0)x0.4
..\rule(*+4.0)x0.4
.\glue(\baselineskip) 3.0
.\hbox(3.0+0.0)x0.4
..\rule(3.0+*)x0

将盒子的距离减少到 \lineskiplimit以内，即

\setbox0\vbox{\hbox{\vrule depth4pt}
\hbox{\vrule height 5pt}}

\showbox0

将给出

\box0=
\vbox(11.0+0.0)x0.4
.\hbox(0.0+4.0)x0.4
..\rule(*+4.0)x0.4
.\glue(\lineskip) 2.0
.\hbox(5.0+0.0)x0.4
..\rule(5.0+*)x0.4

其中插入的是 \lineskip粘连，而不是通常的 \baselineskip粘连。

Plain TEX中的默认值为
\lineskiplimit=0pt lineskip=1pt

因此，当两个盒子开始碰到时，它们被拉开一个点的距离。

15.2 盒子深度

在确定行间粘连时，\prevdepth代表竖直列中前一个盒子的深度。\prevdepth
参数只能在竖直模式中使用。

\prevdepth 被设定为添加到竖直列的盒子的深度，但它不受 \unvbox 或
\unvcopy 影响。在 \hrule 之后它被设为 -1000pt 以阻止在下个盒子前生成行间

170 第 15 章 基线距离

粘连。
在竖直列的开头，\prevdepth被设为 -1000pt，除非在 \halign和 \noalign

中，此时使用的是外层列表的 \prevdepth值。在阵列的结尾，阵列末尾行设定的
\prevdepth的值被送到外层列表中。
为阻止一次行间粘连，只需要修改 \prevdepth。
\def\nointerlineskip{\prevdepth=-1000pt}

\offinterlineskip宏要彻底得多：它使得所有行间粘连都为零，从调用它的
时刻算起，或者，倘若在段落中间使用它，从段落开头处算起。它的定义为

\baselineskip=-1000pt \lineskip=0pt
\lineskiplimit\maxdimen

其中第二行是关键之处：它使得 TEX 添加的 \lineskip 粘连始终等于零。这样
\baselineskip的设置将不再重要。

\offinterlineskip宏在阵列中能派上用场（见第 25章）。
通过设置
\lineskiplimit=-\maxdimen

你可以强制 TEX 始终使用 \baselineskip，而不管是否将导致盒子靠得太近，或
者导致它们重叠。

15.3 术语

在铅字排版时代，一个字体的所有字母都印在相同大小的 ‘字身’上。因此排版
的每行都有相同的高度和深度，从而基线的距离将有合适的大小。若由于某原因需
要增加此距离（见 [52]对此问题的讨论），则需要插入一个铅条（strips of lead）。
这个额外的距离就称为 ‘leading’（发音同 ‘ledding’）。
在照相排版时代，基线距离有时候被称为 ‘film transport’，而 ‘leading’ 这个

术语变得模糊，有时也被用于表示基线距离。这种混乱同样出现在 TEX 中：参数
\baselineskip 指定基线距离，但是在追踪输出中（见上面的例子），为保证基线
距离等于 \baselineskip而插入的粘连也被称为 \baselineskip。

15.4 补充说明

一般地，对于超过一页的文档，自始至终保持相同的基线距离比较合适。然
而，对于单页文档，你可以添加伸长度到 \baselineskip，这样可以让文本在底部
对齐。
若仅仅想增加某两行的距离，你可以使用 \vadjust命令。这个命令的参量是

竖直素材，它们将被插入到竖直列并放在这个命令所在的行之后。比如这个段落的

第二行就包含命令 \vadjust{\kern2pt}。

15.4 补充说明 171

行间距的大小可以在段落中间修改，这是因为在分段为行并添加到主竖直列时
才会用到 \baselineskip的当前值。\lineskip和 \lineskiplimit类似。

Plain TEX宏 \openup给 \baselineskip、\lineskip和 \lineskiplimit增
加宏参量所指定的大小。其效果是给行间距增加所指定的大小，无论它是由
\baselineskip还是由 \lineskip给出。

第 16 章 Paragraph Start

At the start of a paragraph TEX inserts a vertical skip as a separation from
the preceding paragraph, and a horizontal skip as an indentation for the current
paragraph. This chapter explains the exact sequence of actions, and it discusses
how TEX’s decisions can be altered.

\indent Switch to horizontal mode and insert a box of width \parindent.

\noindent Switch to horizontal mode with an empty horizontal list.

\parskip Amount of glue added to the surrounding vertical list when a
paragraph starts. Plain TEX default: 0pt plus 1pt.

\parindent Size of the indentation box added in front of a paragraph. Plain
TEX default: 20pt.

\everypar Token list inserted in front of paragraph text;

\leavevmode Macro to switch to horizontal mode if necessary.

16.1 When does a paragraph start

TEX starts a paragraph whenever it switches from vertical mode to (unre-
stricted) horizontal mode. This switch can be effected by one of the commands
\indent and \noindent, for example

{\bf And now~\dots}
\vskip3pt
\noindent It's~\dots

or by any ⟨horizontal command⟩. Horizontal commands include characters, in-
line formulas, and horizontal skips, but not boxes. Consider the following ex-
amples. The character ‘I’ is a horizontal command:

\vskip3pt
It's~\dots

A single $ is a horizontal command:

172

16.2 What happens when a paragraph starts 173

x is supposed~\dots

The control sequence \hskip is a horizontal command:
\hskip .5\hsize Long indentation~\dots

The full list of horizontal commands is given on page 76.
Upon recognizing a horizontal command in vertical mode, TEX will perform

an \indent command (and all the actions associated with it; see below), and
after that it will reexamine the horizontal command, this time executing it.

16.2 What happens when a paragraph starts

The \indent and \noindent commands cause a paragraph to be started.
An \indent command can either be placed explicitly by the user or a macro, or
it can be inserted by TEX when a ⟨horizontal command⟩ occurs in vertical mode;
a \noindent command can only be placed explicitly.

After either command is encountered, \parskip glue is appended to the
surrounding vertical list unless TEX is in internal vertical mode and that list
is empty (for example, at the start of a \vbox or \vtop). TEX then switches
to unrestricted horizontal mode with an empty horizontal list. In the case of
\indent (which may be inserted implicitly) an empty \hbox of width \parindent
is placed at the start of the horizontal list; after \noindent no indentation box
is inserted.

The contents of the \everypar ⟨token parameter⟩ are then inserted into the
input (see some applications below). After that, the page builder is exercised
(see Chapter 27). Note that this happens in horizontal mode: this is to move
the \parskip glue to the current page.

If an \indent command is given while TEX is already in horizontal mode,
the indentation box is inserted just the same. This is not very useful.

16.3 Assorted remarks

16.3.1 Starting a paragraph with a box

An \hbox does not imply horizontal mode, so an attempt to start a para-
graph with a box, for instance

\hbox to 0cm{\hss\bullet\hskip1em}Text

will make the text following the box wind up one line below the box. It is nec-
essary to switch to horizontal mode explicitly, using for instance \noindent or

174 第 16 章 Paragraph Start

\leavevmode. The latter is defined using \unhbox, which is a horizontal com-
mand.

16.3.2 Starting a paragraph with a group

If the first ⟨horizontal command⟩ of a paragraph is enclosed in braces, the
\everypar is evaluated inside the group. This may give unexpected results.
Consider this example:

\everypar={\setbox0=\vbox\bgroup\def\par{\egroup}}
{\bf Start} a paragraph ... \par

The ⟨horizontal command⟩ starting the paragraph is the character ‘S’, so when
\everypar has been inserted the input is essentially

{\bf \indent\setbox0=\vbox\bgroup
\def\par{\egroup}Start} a paragraph ... \par

which is equivalent to
{\bf \setbox0=\vbox{Start} a paragraph ... \par

The effect of this is rather different from what was intended. Also, TEX will
probably end the job inside a group.

16.4 Examples

16.4.1 Stretchable indentation

Considering that \parindent is a ⟨dimen⟩, not a ⟨glue⟩, it is not possible to
declare

\parindent=1cm plus 1fil

in order to get a variable indentation at the start of a paragraph. This problem
may be solved by putting

\everypar={\nobreak\hskip 1cm plus 1fil\relax}

The \nobreak serves to prevent (in rare cases) a line break at the stretchable
glue.

16.4.2 Suppressing indentation

Inserting {\setbox0=\lastbox} in the horizontal list at the beginning of
the paragraph removes the indentation: indentation consists of a box, which is
available through \lastbox. Assigning it effectively removes it from the list.

However, this command sequence has to be inserted at a moment when
TEX has already switched to horizontal mode, so explicit insertion of these com-

16.4 Examples 175

mands in front of the first ⟨horizontal command⟩ of the paragraph does not
work. The moment of insertion of the \everypar tokens is a better candidate:
specifying

\everypar={{\setbox0=\lastbox}}

leads to unindented paragraphs, even if \parindent is not zero.

16.4.3 An indentation scheme

The above idea of letting the indentation box be removed by \everypar can
be put to use in a systematic approach to indentation, where two conditionals

\newif\ifNeedIndent %as a rule
\newif\ifneedindent %special cases

control whether paragraphs should indent as a rule, and whether in special
cases indentation is needed. This section is taken from [8].

We take a fixed \everypar:
\everypar={\ControlledIndentation}

which executes in some cases the macro \RemoveIndentation
\def\RemoveIndentation{{\setbox0=\lastbox}}

The implementation of \ControlledIndentation is:
\def\ControlledIndentation

{\ifNeedIndent \ifneedindent
\else \RemoveIndentation\needindenttrue \fi

\else \ifneedindent \needindentfalse
\else \RemoveIndentation

\fi \fi}

In order to regulate indentation for a whole document, the user now once spec-
ifies, for instance,

\NeedIndenttrue

to indicate that, in principle, all paragraphs should indent. Macros such as
\section can then prevent indentation in individual cases:

\def\section#1{ ... \needindentfalse}

16.4.4 A paragraph skip scheme

The use of \everypar to control indentation, as was sketched above, can be
extended to the paragraph skip.

A visible white space between paragraphs can be created by the \parskip
parameter, but, once this parameter has been set to some value, it is difficult
to prevent paragraph skip in certain places elegantly. Usually, white space

176 第 16 章 Paragraph Start

above and below environments and section headings should be specifiable in-
dependently of the paragraph skip. This section sketches an approach where
\parskip is set to zero directly above and below certain constructs, while the
\everypar is used to restore former values. This section is taken from [9].

First of all, here are two tools. The control sequence \csarg will be used
only inside other macros; a typical call will look like

\csarg\vskip{#1Parskip}

Here is the definition:
\def\csarg#1#2{\expandafter#1\csname#2\endcsname}

Next follows a generalization of \vskip: the macro \vspace will not place its
argument if the previous glue item is larger; otherwise it will eliminate the
preceding glue, and place its argument.

\newskip\tempskipa
\def\vspace#1{\tempskipa=#1\relax

\ifvmode \ifdim\tempskipa<\lastskip
\else \vskip-\lastskip \vskip\tempskipa \fi

\else \vskip\tempskipa \fi}

Now assume that any construct foo with surrounding white space starts
and ends with macro calls \StartEnvironment{foo} and \EndEnvironment{foo}
respectively. Furthermore, assume that to this environment there correspond
three glue registers: the \fooStartskip (glue above the environment), \fooParskip
(the paragraph skip inside the environment), and the \fooEndskip (glue below
the environment).

For restoring the value of the paragraph skip a conditional and a glue reg-
ister are needed:

\newskip\TempParskip \newif\ifParskipNeedsRestoring

The basic sequence for the starting and ending macros for the environments is
then

\TempParskip=\parskip\parskip=0cm\relax
\ParskipNeedsRestoringtrue

The implementations can now be given as:
\def\StartEnvironment#1{\csarg\vspace{#1Startskip}

\begingroup % make changes local
\csarg\TempParskip{#1Parskip} \parskip=0cm\relax
\ParskipNeedsRestoringtrue}

\def\EndEnvironment#1{\csarg\vspace{#1Endskip}
\endgroup % restore global values
\ifParskipNeedsRestoring
\else \TempParskip=\parskip \parskip=0cm\relax

\ParskipNeedsRestoringtrue

16.4 Examples 177

\fi}

The \EndEnvironment macro needs a little comment: if an environment is used
inside another one, and it occurs before the first paragraph in that environment,
the value of the paragraph skip for the outer environment has already been
saved. Therefore no further actions are required in that case.

Note that both macros start with a vertical skip. This prevents the \begingroup
and \endgroup statements from occurring in a paragraph.

We now come to the main point: if necessary, the \everypar will restore
the value of the paragraph skip.

\everypar={\ControlledIndentation\ControlledParskip}
\def\ControlledParskip

{\ifParskipNeedsRestoring
\parskip=\TempParskip \ParskipNeedsRestoringfalse

\fi}

第 17 章 Paragraph End

TEX’s mechanism for ending a paragraph is ingenious and effective. This
chapter explains the mechanism, the role of \par in it, and it gives a number of
practical remarks.

\par Finish off a paragraph and go into vertical mode.

\endgraf Synonym for \par: \let\endgraf=\par

\parfillskip Glue that is placed between the last element of the paragraph
and the line end. Plain TEX default: 0pt plus 1fil.

17.1 The way paragraphs end

A paragraph is terminated by the primitive \par command, which can be
explicitly typed by the user (or inserted by a macro expansion):

... last words.\par
A new paragraph ...

It can be implicitly generated in the input processor of TEX by an empty line
(see Chapter 2):

... last words.

A new paragraph ...

The \par can be inserted because a ⟨vertical command⟩ occurred in unrestricted
horizontal mode:

... last words.\vskip6pt
A new paragraph ...

Also, a paragraph ends if a closing brace is found in horizontal mode inside
\vbox, \insert, or \output.

After the \par command TEX goes into vertical mode and exercises the page
builder (see page 253). If the \par was inserted because a vertical command
occurred in horizontal mode, the vertical command is then examined anew. The

178

17.2 Assorted remarks 179

\par does not insert any vertical glue or penalties itself. A \par command also
clears the paragraph shape parameters (see Chapter 18).

17.1.1 The \par command and the \par token

It is important to distinguish between the \par token and the primitive
\par command that is the initial meaning of that token. The \par token is
inserted when the input processor sees an empty line, or when the execution
processor finds a ⟨vertical command⟩ in horizontal mode; the \par command is
what actually closes off a paragraph. Decoupling the token and the command
is an important tool for special effects in paragraphs (see some examples in
Chapters 5 and 9).

17.1.2 Paragraph filling: \parfillskip

After the last element of the paragraph TEX implicitly inserts the equiva-
lent of

\unskip \penalty10000 \hskip\parfillskip

The \unskip serves to remove any spurious glue at the paragraph end, such
as the space generated by the line end if the \par was inserted by the input
processor. For example:

end.

\noindent Begin

results in the tokens

end. \par Begin

With the sequence inserted by the \par this becomes

end. \unskip\penalty10000\hskip ...

which in turn gives

end.\penalty ...

The \parfillskip is in plain TEX first-order infinite (0pt plus 1fil), so
ending a paragraph with \hfil\bullet\par will give a bullet halfway be-
tween the last word and the line end; with \hfill\bullet\par it will be flush
right.

17.2 Assorted remarks

180 第 17 章 Paragraph End

17.2.1 Ending a paragraph and a group at the same time

If a paragraph is set in a group, it may be necessary to ensure that the \par
ending the paragraph occurs inside the group. The parameters influencing the
typesetting of the paragraph, such as the \leftskip and the \baselineskip, are
only looked at when the paragraph is finished. Thus finishing off a paragraph
with

... last words.}\par

causes the values to be used that prevail outside the group, instead of those
inside.

Better ways to end the paragraph are
... last words.\par}

or
... last words.\medskip}

In the second example the vertical command \medskip causes the \par token to
be inserted.

17.2.2 Ending a paragraph with \hfill\break

The sequence \hfill\break is a way to force a ‘newline’ inside a para-
graph. If you end a paragraph with this, however, you will probably get an
Underfull \hbox error. Surprisingly, the underfull box is not the broken line –
after all, that one was filled – but a completely empty box following it (actually,
it does contain the \leftskip and \rightskip).

What happens? The paragraph ends with
\hfill\break\par

which turns into
\hfill\break\unskip\nobreak\hskip\parfillskip

The \unskip finds no preceding glue, so the \break is followed by a penalty item
and a glue item, both of which disappear after the line break has been chosen
at the \break. However, TEX has already decided that there should be an extra
line, that is, an \hbox to \hsize. And there is nothing to fill it with, so an
underfull box results.

17.2.3 Ending a paragraph with a rule

See page 109 for paragraphs ending with rule leaders instead of the default
\parfillskip white space.

17.2 Assorted remarks 181

17.2.4 No page breaks in between paragraphs

The \par command does not insert any glue in the vertical list, so in the
sequence

... last words.\par \nobreak \medskip
\noindent First words ...

no page breaks will occur between the paragraphs. The vertical list generated
is

\hbox(6.94444+0.0)x ... % last line of paragraph
\penalty 10000 % \nobreak
\glue 6.0 plus 2.0 minus 2.0 % \medskip
\glue(\parskip) 0.0 plus 1.0 % \parskip
\glue(\baselineskip) 5.05556 % interline glue
\hbox(6.94444+0.0)x ... % first line of paragraph

TEX will not break this vertical list above the \medskip, because the penalty
value prohibits it; it will not break at any other place, because it can only break
at glue if that glue is preceded by a non-discardable item.

17.2.5 Finite \parfillskip

In plain TEX, \parfillskip has a (first-order) infinite stretch component.
All other glue in the last line of a paragraph will then be set at natural width.
If the \parfillskip has only finite (or possibly zero) stretch, other glue will
be stretched or shrunk. A display formula in a paragraph with such a last
line will be surrounded by \abovedisplayskip and \belowdisplayskip, even if
\abovedisplayshortskip glue would be in order.

The reason for this is that glue setting is slightly machine-dependent, and
any such processes should be kept out of TEX’s global decisions.

17.2.6 A precaution for paragraphs that do not indent

If you are setting a text with both the paragraph indentation and the white
space between paragraphs zero, you run the risk that the start of a new para-
graph may be indiscernible when the last line of the previous paragraph ends
almost or completely flush right. A sensible precaution for this is to set the
\parfillskip to, for instance

\parfillskip=1cm plus 1fil

instead of the usual 0cm plus 1fil.
On the other hand, you may let yourself be convinced by [46] that para-

graphs should always indent.

第 18 章 段落形状

本章讨论影响段落形状的参数和命令。

\parindent 在段落开头添加的缩进盒子的宽度。Plain TEX默认为 20pt。

\hsize 段落排版所用的行宽。Plain TEX默认为 6.5in。

\leftskip 放在段落各行左侧的粘连。

\rightskip 放在段落各行右侧的粘连。

\hangindent 若大于零，表示左侧的缩进量；若小于零，表示右侧缩进量的负值。

\hangafter 若大于零，表示仅不缩进段落的前面多少行；若小于零，其绝对值表
示仅缩进段落的前面多少行。默认值为 1。

\parshape 用于设定段落形状的一般命令。

← →← parindent → ← →

← leftskip → ← rightskip →

← → ← →

.

.

.

.

← → ← →

← → ← →

← → ← parfillskip →← →

←− hsize −→

182

18.1 文本行的宽度 183

18.1 文本行的宽度

在吸收完一个段落后，TEX 形成了一个以缩进盒子开头，以 \parfillskip
粘连结尾的水平列，然后将此列表分为长度相等的多行。段落各行的宽度等于
\hsize，其中包括两侧填充的 \leftskip和 \rightskip粘连。

TEX的断行算法将 \leftskip和 \rightskip的值考虑在内。而 plain TEX的
\raggedright宏与 LATEX的 ‘flushleft’环境的要点就在于，将 \rightskip设定为
零加上某些伸长量。

命令 \parshape和 \hangindent也影响行宽。它们通过改变 \hsize然后移动
文本行所在盒子来实现。

18.2 段落形状参数

18.2.1 悬挂缩进

有种简单而常见的段落形状是开头或结尾若干行缩进。TEX 用 \hangafter和
\hangindent这两个参数实现这种形状。这两者都可以设定为正值或负值。

\hangindent控制缩进量的大小：

• \hangindent > 0：段落根据它的大小在左侧缩进。

• \hangindent < 0：段落根据它的绝对值的大小在右侧缩进。

举个例子（假设 \parindent=0pt），

a a a a a a a a a a a a ...

\hangindent=10pt
a a a a a a a a a a a a ...

\hangindent=-10pt
a a a a a a a a a a a a ...

给出

a a a a a
a a a a a
a a …

a a a a a
a a a a
a a a …

a a a a a
a a a a
a a a …

\hangindent的默认值为 0pt。
\hangafter参数确定需要缩进的行的数目：

• \hangafter ≥ 0：这么多行除外的其他行都被缩进；也就是说，段落开头的这
么多行将不会被缩进。

• \hangafter < 0：它的绝对值就是段落开头将被缩进的行的数目。

举个例子，

184 第 18 章 段落形状

a a a a a a a a a a a a ...

\hangindent=10pt \hangafter=2
a a a a a a a a a a a a ...

\hangindent=10pt \hangafter=-2
a a a a a a a a a a a a ...

给出

a a a a a
a a a a a
a a …

a a a a a
a a a a a

a a …

a a a a
a a a a

a a a a …
\hangafter的默认值为 1。
这两个参数都可正可负，总共有四种悬挂缩进结果。下面还将介绍探出边界的

悬挂缩进（‘outdent’）。
悬挂缩进是这样实现的：先从缩进行的 \hsize中减去缩进量，接着将段落分

段为行，然后往右移动那些左侧缩进行。
正常的 \parindent缩进不受悬挂缩进影响。如果不想要这个多余缩进，你应

该在悬挂缩进段落开头使用 \noindent。
在每个 \par命令之后 \hangindent和 \hangafter被还原为它们的默认值。

18.2.2 一般形状

用 \parshape 可以实现很一般的段落形状。这个命令可以指定段落前 n 行的
缩进量和行宽，因此它有 2n + 1个参数：先是行数 n，接着是 n对缩进量和行宽。

\parshape⟨equals⟩ n i1 ℓ1 . . . in ℓn

如果段落超过 n 行，剩下的各行将重复第 n 行的指定。如果段落少于 n 行，多余
的指定将被忽略。默认值（当然）是 \parshape = 0。
如果两者同时给出，那么 TEX执行 \parshape命令而忽略掉 \hangindent。在

\parshape生效时，原本的 \parindent、\leftskip和 \rightskip仍然有效。
如同 \hangindent、\hangafter和 \looseness命令，\parshape参数也会在

\par命令后被重置（见第 19章）。由于每个空行生成一个 \par记号，在段落形状
（或悬挂缩进）定义和段落内容之间你不应该留下空行。

控制序列 \parshape是一个 ⟨internal integer⟩：它的值等于所设定的行数 n。

18.3 杂项注记

18.3.1 末尾行居中

给 \leftskip和 \rightskip设定相等的伸长量和收缩量将给出居中文本，在
各行都居中的意义上。要让段落首行和尾行真正地居中，必须将 \parindent 和
\parfillskip都设定为零。然而，两侧边界是不对齐的。

18.3 杂项注记 185

出人意料地，\leftskip和 \rightskip可以让段落两侧对齐而末尾行居中：
\leftskip=0cm plus 0.5fil \rightskip=0cm plus -0.5fil
\parfillskip=0cm plus 1fil

在段落的非末尾行，伸长量加起来等于零，所以插入的 \leftskip和 \rightskip
等于零。而在末尾行，\parfillskip添加了 plus 1fil的伸长量；因此左右两边
的总伸长量都是 plus 0.5fil。
如果这样写将会是错误的：
\leftskip=0cm plus 0.5fil \rightskip=0cm minus 0.5fil

对此 TEX将给出一个错误：它抱怨 ‘infinite shrinkage’。
要让首行和尾行一样居中，可以用下面的参数设定：
\parindent=0pt \everypar{\hskip 0pt plus -1fil}
\leftskip=0pt plus .5fil
\rightskip=0pt plus -.5fil

此时用 \everypar 插入的水平间距和 \leftskip 间距合起来将使得段落首行两侧
的伸展能力相同。

18.3.2 凸出边界

假设你想要的悬挂缩进是让段落第二行以后各行凸出左边界 1cm。设定
\hangindent=-1cm将得到在右边界缩进 1cm的悬挂缩进，所以需要另想办法。下
面的方法可以完成此任务：

\leftskip=-1cm \hangindent=1cm \hangafter=-2

此方法的唯一问题在于段落结束后需要重设 \leftskip。我们可以通过重定义
\par解决此问题：

\def\hangintomargin{\bgroup
\leftskip=-1cm \hangindent=1cm \hangafter=-2
\def\par{\endgraf\egroup}}

这里对 \par的重定义是局部的，只对需要凸出的段落生效。
还有一种更简洁的做法是利用 \parshape：
\dimen0=\hsize \advance\dimen0 by 1cm
\parshape=3 % three lines:

0cm\hsize % first line specification
0cm\hsize % second line specification
-1cm\dimen0 % third line specification

18.3.3 悬挂在对象上

LATEX格式有一个 \@hangfrom宏，用于将整个段落的文本悬挂在某个对象上，
此对象通常是盒子或短文本。

186 第 18 章 段落形状

悬挂例子 这个段落是下面定义的 \hangfrom 宏的一个例子。在 LATEX 文档类中，
有一个 \@hangfrom宏（与这里定义的类似）用于排版多行节标题。

现在来看 \hangfrom宏的定义：

\def\hangfrom#1{\def\hangobject{#1}\setbox0=\hbox{\hangobject}%
\hangindent \wd0 \noindent \hangobject \ignorespaces}

由于默认情形 \hangafter=1，这将使得段落首行的宽度为 \hsize，而后面各行按
照 \hangobject的宽度左缩进。

18.3.4 另一种悬挂缩进方法

将移动边界和凸出边界结合起来也可以得到悬挂缩进。比如逐项列表就可以用
这种方式实现：

\newdimen\listindent
\def\itemize{\begingroup

\advance\leftskip by \listindent
\parindent=-\listindent}

\def\stopitemize{\par\endgroup}
\def\item#1{\par\leavevmode

\hbox to \listindent{#1\hfil}\ignorespaces
}

若想让列表项包含多个段落，可以这样实现：
\newdimen\listindent \newdimen\listparindent
\def\itemize{\begingroup

\advance\leftskip by \listindent
\parindent=\listparindent}

\def\stopitemize{\par\endgroup}
\def\item#1{\par\noindent

\hbox to 0cm{\kern-\listindent #1\hfil}\ignorespaces
}

例子：

\itemize\item{1.}First item\par
Is two paragraphs long.
\item{2.}Second item.\stopitemize

给出

1. First item

Is two paragraphs long.

2. Second item.

18.3 杂项注记 187

18.3.5 悬挂缩进对比边界移动

上面的例子似乎表明悬挂缩进与修改 \leftskip 和 \rightskip 是可互换的。
它们确实可以，但只在一定程度上。
将段落的 \leftskip设为某个正值意味着 \hsize保持不变，但各行都以一个

粘连项开始。另一方面，悬挂缩进是通过减少缩进行的 \hsize值，然后在竖直列
中移动水平盒子实现的。
这两种方法的区别可以从这个事实中看到：改变 \leftskip 并不会移动陈列

公式。见第 9章中展示的指引线如何受边界移动影响的例子。

18.3.6 更多例子

段落形状（用各种方式修改）的更多例子可以在 [10]中找到。第 72页的一个
例子就取自该文章。

第 19 章 Line Breaking

This chapter treats line breaking and the concept of ‘badness’ that TEX uses
to decide how to break a paragraph into lines, or where to break a page. The
various penalties contributing to the cost of line breaking are treated here, as
is hyphenation. Page breaking is treated in Chapter 27.

\penalty Specify desirability of not breaking at this point.

\linepenalty Penalty value associated with each line break. Plain TEX
default: 10.

\hyphenpenalty Penalty associated with break at a discretionary item in the
general case. Plain TEX default: 50.

\exhyphenpenalty Penalty for breaking a horizontal line at a discretionary
item in the special case where the prebreak text is empty. Plain TEX
default: 50.

\adjdemerits Penalty for adjacent visually incompatible lines. Plain TEX
default: 10 000.

\doublehyphendemerits Penalty for consecutive lines ending with a hyphen.
Plain TEX default: 10 000.

\finalhyphendemerits Penalty added when the penultimate line of a
paragraph ends with a hyphen. Plain TEX default: 5000.

\allowbreak Macro for creating a breakpoint by inserting a \penalty0.

\pretolerance Tolerance value for a paragraph without hyphenation. Plain
TEX default: 100.

\tolerance Tolerance value for lines in a paragraph with hyphenation. Plain
TEX default: 200.

\emergencystretch (TEX3 only) Assumed extra stretchability in lines of a
paragraph.

\looseness Number of lines by which this paragraph has to be made longer

188

19.1 Paragraph break cost calculation 189

than it would be ideally.

\prevgraf The number of lines in the paragraph last added to the vertical list.

\discretionary Specify the way a character sequence is split up at a line
break.

\- Discretionary hyphen; this is equivalent to \discretionary{-}{}{}.

\hyphenchar Number of the hyphen character of a font.

\defaulthyphenchar Value of \hyphenchar when a font is loaded. Plain TEX
default: `\-.

\uchyph Positive to allow hyphenation of words starting with a capital letter.
Plain TEX default: 1.

\lefthyphenmin (TEX3 only) Minimal number of characters before a
hyphenation. Plain TEX default: 2.

\righthyphenmin (TEX3 only) Minimum number of characters after a
hyphenation. Plain TEX default: 3.

\patterns Define a list of hyphenation patterns for the current value of
\language; allowed only in IniTEX.

\hyphenation Define hyphenation exceptions for the current value of
\language.

\language Choose a set of hyphenation patterns and exceptions.

\setlanguage Reset the current language.

19.1 Paragraph break cost calculation
A paragraph is broken such that the amount d of demerits associated with

breaking it is minimized. The total amount of demerits for a paragraph is the
sum of those for the individual lines, plus possibly some extra penalties. Con-
sidering a paragraph as a whole instead of breaking it on a line-by-line basis
can lead to better line breaking: TEX can choose to take a slightly less beautiful
line in the beginning of the paragraph in order to avoid bigger trouble later on.

For each line demerits are calculated from the badness b of stretching or
shrinking the line to the break, and the penalty p associated with the break.
The badness is not allowed to exceed a certain prescribed tolerance.

In addition to the demerits for breaking individual lines, TEX assigns de-
merits for the way lines combine; see below.

The implementation of TEX’s paragraphbreaking algorithm is explained
in [27].

190 第 19 章 Line Breaking

19.1.1 Badness

From the ratio between the stretch or shrink present in a line, and the ac-
tual stretch or shrink taken, the badness of breaking a line at a certain point is
calculated. This badness is an important factor in the process of line breaking.
See page 100 for the formula for badness.

In this chapter badness will only be discussed in the context of line break-
ing. Badness is also computed when a vertical list is stretched or shrunk (see
Chapter 27).

The following terminology is used to describe badness:

tight (3) is any line that has shrunk with a badness b ≥ 13, that is, by using at
least one-half of its amount of shrink (see page 100 for the computation).

decent (2) is any line with a badness b ≤ 12.

loose (1) is any line that has stretched with a badness b ≥ 13, that is, by using
at least one-half of its amount of stretch.

very loose (0) is any line that has stretched with a badness b ≥ 100, that is,
by using its full amount of stretch or more. Recall that glue can stretch,
but not shrink more than its allowed amount.

The numbering is used in trace output (Chapter 34), and it is also used in
the following definition: if the classifications of two adjacent lines differ by
more than 1, the lines are said to be visually incompatible. See below for the
\adjdemerits parameter associated with this.

Overfull horizontal and vertical boxes are passed unnoticed if their excess
width or height is less than \hfuzz or \vfuzz respectively; they are not reported
if the badness is less than \hbadness or \vbadness (see Chapter 5).

19.1.2 Penalties and other break locations

Line breaks can occur at the following breakpoints in horizontal lists:

1. At a penalty. The penalty value is the ‘aesthetic cost’ of breaking the line
at that place. Negative penalties are considered as bonuses. A penalty of
10 000 or more inhibits, and a penalty of −10 000 or less forces, a break.
Putting more than one penalty in a row is equivalent to putting just the
one with the minimal value, because that one is the best candidate for line
breaking.
Penalties in horizontal mode are inserted by the user (or a user macro).
The only exception is the \nobreak inserted before the \parfillskip glue.

2. At a glue, if it is not part of a math formula, and if it is preceded by a

19.1 Paragraph break cost calculation 191

non-discardable item (see Chapter 6). There is no penalty associated with
breaking at glue.
The condition about the non-discardable precursor is necessary, because
otherwise breaking in between two pieces of glue would be possible, which
would cause ragged edges to the paragraph.

3. At a kern, if it is not part of a math formula and if it is followed by glue.
There is no penalty associated with breaking at a kern.

4. At a math-off, if that is followed by glue. Since math-off (and math-on) act
as kerns (see Chapter 23), this is very much like the previous case. There
is no penalty associated with breaking at a math-off.

5. At a discretionary break. The penalty is the \hyphenpenalty or the \exhyphenpenalty.
This is treated below.

Any discardable material following the break – glue, kerns, math-on/off
and penalties – is discarded. If one considers a line break at glue (kern, math-
on/off) to occur at the front end of the glue item, this implies that that piece of
glue disappears in the break.

19.1.3 Demerits

From the badness of a line and the penalty, if any, the demerits of the line
are calculated. Let l be the value of \linepenalty, b the badness of the line,
p the penalty at the break; then the demerits d are given by

d =


(l + b)2 + p2 if 0 ≤ p < 10 000

(l + b)2 − p2 if −10 000 < p < 0

(l + b)2 if p ≤ −10 000

Both this formula and the one for the badness are described in [27] as ‘quite
arbitrary’, but they have been shown to lead to good results in practice.

The demerits for a paragraph are the sum of the demerits for the lines, plus

• the \adjdemerits for any two adjacent lines that are not visually compati-
ble (see above),

• \doublehyphendemerits for any two consecutive lines ending with a hy-
phen, and the

• \finalhyphendemerits if the penultimate line of a paragraph ends with a
hyphen.

At the start of a paragraph TEX acts as if there was a preceding line which
was ‘decent’. Therefore \adjdemerits will be added if the first line is ‘very
loose’. Also, the last line of a paragraph is ordinarily also ‘decent’ – all spaces

192 第 19 章 Line Breaking

are set at natural width owing to the infinite stretch in the \parfillskip – so
\adjdemerits are added if the preceding line is ‘very loose’.

Note that the penalties at which a line break is chosen weigh about as
heavily as the badness of the line, so they can be relatively small. However, the
three extra demerit parameters have to be of the order of the square of penalties
and badnesses to weigh equally heavily.

19.1.4 The number of lines of a paragraph

After a paragraph has been completed (or partially completed prior to a
display), the variable \prevgraf records the number of lines in the paragraph.
By assigning to this variable – and because this is a ⟨special integer⟩ such an
assignment is automatically global – TEX’s decision processes can be influenced.
This may be useful in combination with hanging indentation or \parshape spec-
ifications (see Chapter 18).

Some direct influence of the linebreaking process on the resulting number
of lines exists. One factor is the \linepenalty which is included in the demerits
of each line. By increasing the line penalty TEX can be made to minimize the
number of lines in a paragraph.

Deviations from the optimal number of lines, that is, the number of lines
stemming from the optimal way of breaking a paragraph into lines, can be
forced by the user by means of the \looseness parameter. This parameter,
which is reset every time the shape parameters are cleared (see Chapter 18),
indicates by how many lines the current paragraph should be made longer than
is optimal. A negative value of \looseness will attempt to make the paragraph
shorter by a number of lines that is the absolute value of the parameter.

TEX will still observe the values of \pretolerance and \tolerance (see be-
low) when lengthening or shortening a paragraph under influence of \looseness.
Therefore, TEX will only lengthen or shorten a paragraph for as far as is possible
without exceeding these parameters.

19.1.5 Between the lines

TEX’s paragraph mechanism packages lines into horizontal boxes that are
appended to the surrounding vertical list. The resulting sequence of vertical
items is then a repeating sequence of

• a box containing a line of text,

• possibly migrated vertical material (see page 79),

19.2 The process of breaking 193

• a penalty item reflecting the cost of a page break at that point, which is
normally the \interlinepenalty (see Chapter 27), and

• interline glue, which is calculated automatically on basis of the \prevdepth
(see Chapter 15).

19.2 The process of breaking

TEX tries to break paragraphs in such a way that the badness of each line
does not exceed a certain tolerance. If there exists more than one solution to
this, the one with the fewest demerits is taken.

By setting \tracingparagraphs to a positive value, TEX can be made to
report the calculations of the paragraph mechanism in the log file. Some im-
plementations of TEX may have this option disabled to make TEX run faster.

19.2.1 Three passes

First an attempt is made to split the paragraph into lines without hyphen-
ating, that is, without inserting discretionary hyphens. This attempt succeeds
if none of the lines has a badness exceeding \pretolerance.

Otherwise, a second pass is made, inserting discretionaries and using \tolerance.
If \pretolerance is negative, the first pass is omitted.

TEX can be made to make a third pass if the first and second pass fail. If
\emergencystretch is a positive dimension, TEX will assume this much extra
stretchability in each line when badness and demerits are calculated. Thus
solutions that only slightly exceeded the given tolerances will now become fea-
sible. However, no glue of size \emergencystretch is actually present, so un-
derfull box messages may still occur.

19.2.2 Tolerance values

How much trouble TEX will have typesetting a piece of text depends partly
on the tolerance value. Therefore it is sensible to have some idea of what bad-
ness values mean in visual terms.

For lines that are stretched, the badness is 100 times the cube of the stretch
ratio. A badness of 800 thus means that the stretch ratio is 2. If the space is,
as in the ten-point Computer Modern Font,

3.33pt plus 1.67pt minus 1.11pt

a badness of 800 means that spaces have been stretched to

194 第 19 章 Line Breaking

3.33pt + 2× 1.67pt = 6.66pt

that is, to exactly double their natural size. It is up to you to decide whether
this is too large.

19.3 Discretionaries

A discretionary item \discretionary{..}{..}{..} marks a place where a
word can be broken. Each of the three arguments is a ⟨general text⟩ (see Chap-
ter 36): they are, in sequence,

• the pre-break text, which is appended to the part of the word before the
break,

• the post-break text, which is prepended to the part of the word after the
break, and

• the no-break text, which is used if the word is not broken at the discre-
tionary item.

For example: ab\discretionary{g}{h}{cd}ef is the word abcdef, but it can
be hyphenated with abg before the break and hef after. Note that there is no
automatic hyphen character.

All three texts may contain any sorts of tokens, but any primitive com-
mands and macros should expand to boxes, kerns, and characters.

19.3.1 Hyphens and discretionaries

Internally, TEX inserts the equivalent of
\discretionary{\char\hyphenchar\font}{}{}

at every place where a word can be broken. This causes a hyphen character to be
placed before any break. No such discretionary is inserted if \hyphenchar\font
is not in the range 0–255, or if its position in the font is not filled. When a font is
loaded, its \hyphenchar value is set to \defaulthyphenchar. The \hyphenchar
value can be changed after this.

In plain TEX the \defaulthyphenchar has the value `\-, so for all fonts
character 45 (the ascii hyphen character) is the hyphen sign, unless it is speci-
fied otherwise.

The primitive command \- (called a ‘discretionary hyphen’) \-discretionary
hyphen is equivalent to the above
\discretionary{\char\hyphenchar\font}{}{}. Breaking at such a discretionary,
whether inserted implicitly by TEX or explicitly by the user, has a cost of \hyphenpenalty.

19.4 Hyphenation 195

In unrestricted horizontal mode an empty discretionary \discretionary{}{}{}
is automatically inserted after characters whose character code is the \hyphenchar
value of the font, thus enabling hyphenation at that point. The penalty for
breaking a line at such a discretionary with an empty pre-break text is \exhyphenpenalty,
that is, the ‘explicit hyphen’ penalty.

If a word contains discretionary breaks, for instance because of explicit
hyphen characters, TEX will not consider it for further hyphenation. People
have solved the ensuing problems by tricks such as

\def\={\penalty10000 \hskip0pt -\penalty0 \hskip0pt\relax}
... integro\=differential equations...

The skips before and after the hyphen lead TEX into treating the first and second
half of the compound expression as separate words; the penalty before the first
skip inhibits breaking before the hyphen.

19.3.2 Examples of discretionaries

Languages such as German or Dutch have words that change spelling when
hyphenated (German: ‘backen’ becomes ‘bak-ken’; Dutch: ‘autootje’ becomes
‘auto-tje’). This problem can be solved with TEX’s discretionaries.

For instance, for German (this is inspired by [36]):
\catcode`\"=\active
\def"#1{\ifx#1k\discretionary{k-}{k}{ck}\fi}

which enables the user to write ba"ken.
In Dutch there is a further problem which allows a nice systematic solu-

tion. Umlaut characters (‘trema’ is the Dutch term) should often disappear in
a break, for instance ‘na”apen’ hyphenates as ‘na-apen’, and ‘onbe”invloedbaar’
hyphenates as ‘onbe-invloedbaar’. A solution (inspired by [5]) is

\catcode`\"=\active
\def"#1{\ifx#1i\discretionary{-}{i}{\"\i}%

\else \discretionary{-}{#1}{\"#1}\fi}

which enables the user to type na"apen and onbe"invloedbaar.

19.4 Hyphenation

TEX’s hyphenation algorithm uses a list of patterns to determine at what
places a word that is a candidate for hyphenation can be broken. Those aspects
of hyphenation connected with these patterns are treated in appendix H of the
TEX book; the method of generating hyphenation patterns automatically is de-
scribed in [30]. People have been known to generate lists of patterns by hand;

196 第 19 章 Line Breaking

see for instance [28]. Such hand-generated lists may be superior to automati-
cally generated lists.

Here it will mainly be described how TEX declares a word to be a candidate
for hyphenation. The problem here is how to cope with punctuation and things
such as quotation marks that can be attached to a word. Also, implicit kerns,
that is, kerns inserted because of font information, must be handled properly.

19.4.1 Start of a word

TEX starts at glue items (if they are not in math mode) looking for a starting
letter of a word: a character with non-zero \lccode, or a ligature starting with
such a character (upper/lowercase codes are explained on page 46). Looking
for this starting letter, TEX bypasses any implicit kerns, and characters with
zero \lccode (this includes, for instance, punctuation and quotation marks), or
ligatures starting with such a character.

If no suitable starting letter turns up, that is, if something is found that is
not a character or ligature, TEX skips to the next glue, and starts this algorithm
anew. Otherwise a trial word is collected consisting of all following characters
with non-zero \lccode from the same font as the starting letter, or ligatures
consisting completely of such characters. Implicit kerns are allowed between
the characters and ligatures.

If the starting letter is from a font for which the value of \hyphenchar is
invalid, or for which this character does not exist, hyphenation is abandoned
for this word. If the starting letter is an uppercase letter (that is, it is not equal
to its own \lccode), TEX will abandon hyphenation unless \uchyph is positive.
The default value for this parameter is 1 in plain TEX, implying that capitalized
words are subject to hyphenation.

19.4.2 End of a word

Following the trial word can be characters (from another font, or with zero
\lccode), ligatures or implicit kerns. After these items, if any, must follow

• glue or an explicit kern,

• a penalty,

• a whatsit, or

• a \mark, \insert, or \vadjust item.

In particular, the word will not be hyphenated if it is followed by a

• box,

19.4 Hyphenation 197

• rule,

• math formula, or

• discretionary item.

Since discretionaries are inserted after the \hyphenchar of the font, occur-
rence of this character inhibits further hyphenation. Also, placement of accents
is implemented using explicit kerns (see Chapter 3), so any \accent command
is considered to be the end of a word, and inhibits hyphenation of the word.

19.4.3 TEX2 versus TEX3

There is a noticeable difference in the treatment of hyphenated fragments
between TEX2 and TEX3. TEX2 insists that the part before the break should
be at least two characters, and the part after the break three characters, long.
Typographically this is a sound decision: this way there are no two-character
pieces of a word stranded at the end or beginning of the line. Both before and
after the break there are at least three characters.

In TEX3 two integer parameters have been introduced to control the length
of these fragments: \lefthyphenmin and \righthyphenmin. These are set to 2
and 3 respectively in the plain format for TEX3. If the sum of these two is 63 or
more, all hyphenation is suppressed.

Another addition in TEX3, the possibility to have several sets of hyphen-
ation patterns, is treated below.

19.4.4 Patterns and exceptions

The statements

\patterns⟨general text⟩
\hyphenation⟨general text⟩

are ⟨hyphenation assignment⟩s, which are ⟨global assignment⟩s. The \patterns
command, which specifies a list of hyphenation patterns, is allowed only in
IniTEX (see Chapter 33), and all patterns must be specified before the first para-
graph is typeset.

Hyphenation exceptions can be specified at any time with statements such
as

\hyphenation{oxy-mo-ron gar-goyle}

which specify locations where a word may be hyphenated. Subsequent \hyphenation
statements are cumulative.

198 第 19 章 Line Breaking

In TEX3 these statements are taken to hold for the language that is the
current value of the \language parameter.

19.5 Switching hyphenation patterns

When typesetting paragraphs, TEX (version 3) can use several sets of pat-
terns and hyphenation exceptions, for at most 256 languages.

If a \patterns or \hyphenation command is given (see above), TEX stores
the patterns or exceptions under the current value of the \language parameter.
The \patterns command is only allowed in IniTEX, and patterns must be spec-
ified before any typesetting is done. Hyphenation exceptions, however, can be
specified cumulatively, and not only in IniTEX.

In addition to the \language parameter, which can be set by the user, TEX
has internally a current language. This is set to zero at the start of every para-
graph. For every character that is added to a paragraph the current language
is compared with the value of \language, and if they differ a whatsit element
is added to the horizontal list, resetting the current language to the value of
\language.

At the start of a paragraph, this whatsit is inserted after the \everypar
tokens, but \lastbox can still access the indentation box.

As an example, suppose that a format has been created such that lan-
guage 0 is English, and language 1 is Dutch. English hyphenations will then
be used if the user does not specify otherwise; if a job starts with

\language=1

the whole document will be set using Dutch hyphenations, because TEX will in-
sert a command changing the current language at the start of every paragraph.
For example:

\language=1
T...

gives
.\hbox(0.0+0.0)x20.0 % indentation
.\setlanguage1 (hyphenmin 2,3) % language whatsit
.\tenrm T % start of text

The whatsit can be inserted explicitly, without changing the value of \language,
by specifying

\setlanguage⟨number⟩

However, this will hardly ever be needed. One case where it may be necessary
is when the contents of a horizontal box are unboxed to a paragraph: inside the

19.5 Switching hyphenation patterns 199

box no whatsits are added automatically, since inside such a box no hyphen-
ation can take place. See page 69 for another problem with text in horizontal
boxes.

第 20 章 Spacing

The usual interword space in TEX is specified in the font information, but
the user can override this. This chapter explains the rules by which TEX calcu-
lates interword space.

\ Control space. Insert the same amount of space as a space token would if
\spacefactor = 1000.

\spaceskip Interword glue if non-zero.

\xspaceskip Interword glue if non-zero and \spacefactor ≥ 2000.

\spacefactor 1000 times the ratio by which the stretch (shrink) component of
the interword glue should be multiplied (divided).

\sfcode Value for \spacefactor associated with a character.

\frenchspacing Macro to switch off extra space after punctuation.

\nonfrenchspacing Macro to switch on extra space after punctuation.

20.1 Introduction

In between words in a text, TEX inserts space. This space has a natural
component, plus stretch and shrink to make justified (right-aligned) text possi-
ble. Now, in certain styles of typesetting, there is more space after punctuation.
This chapter discusses the mechanism that TEX uses to realize such effect.

Here is the general idea:

• After every character token, the \spacefactor quantity is updated with the
space factor code of that character.

• When space is inserted, its natural size can be augmented (if \spacefactor ≥
2000), and in general its stretch is multiplied, and its shrink divided, by
\spacefactor/1000.

• There are further rules, for instance so that in ...word.) And... the space

200

20.2 Automatic interword space 201

is modified according to the period, not the closing parenthesis.

20.2 Automatic interword space

For every space token in horizontal mode the interword glue of the cur-
rent font is inserted, with stretch and shrink components, all determined by
\fontdimen parameters. To be specific, font dimension 2 is the normal inter-
word space, dimension 3 is the amount of stretch of the interword space, and
4 is the amount of shrink. Font dimension 7 is called the ‘extra space’; see below
(the list of all the font dimensions appears on page 53).

Ordinarily all spaces between words (in one font) would be treated the
same. To allow for differently sized spaces – for instance a typeset equiva-
lent of the double spacing after punctuation in typewritten documents – TEX
associates with each character a so-called space factor.

When a character is added to the current horizontal list, the space factor
code (\sfcode) of that character is assigned to the space factor \spacefactor.
There are two exceptions to this rule:

• When the space factor code is zero, the \spacefactor does not change. This
mechanism allows space factors to persist through parentheses and such;
see section 20.5.3.

• When the space factor code of the last character is >1000 and the current
space factor is <1000, the space factor becomes 1000. This mechanism pre-
vents elongated spaces after initials; see section 20.5.2.

The maximum space factor is 32 767.

The stretch component of the interword space is multiplied by the space
factor divided by 1000; the shrink component is divided by this factor. The extra
space (font dimension 7) is added to the natural component of the interword
space when the space factor is ≥ 2000.

20.3 User interword space

The user can override the interword space contained in the \fontdimen pa-
rameters by setting the \spaceskip and the \xspaceskip to non-zero values.
If \spaceskip is non-zero, it is taken instead of the normal interword space
(\fontdimen2 plus \fontdimen3minus \fontdimen4), but a non-zero \xspaceskip
is used as interword space if the space factor is ≥ 2000.

202 第 20 章 Spacing

If the \spaceskip is used, its stretch and shrink components are multiplied
and divided respectively by \spacefactor/1000.

Note that, if \spaceskip and \xspaceskip are defined in terms of em, they
change with the font.

例子：Let the following macros be given:

\def\a.{\vrule height10pt width4pt\spacefactor=1000\relax}
\def\b.{\vrule height10pt width4pt\spacefactor=3000\relax}
\def\c{\vrule height10pt width4pt\relax}

then

\vbox{
\fontdimen2\font=4pt % normal space
\fontdimen7\font=3pt % extra space
\a. \b. \c\par
% zero extra space
\fontdimen7\font=0pt
\a. \b. \c\par
% set \spaceskip for normal space
\spaceskip=2\fontdimen2\font
\a. \b. \c\par
% set \xspaceskip
\xspaceskip=2pt
\a. \b. \c\par
}

gives

In all of these lines the glue is set at natural width. In the first line
the high space factor value after \b causes the extra space \fontdimen7
to be added. If this is zero (second line), the only difference between
space factor values is the stretch/shrink ratio. In the third line the
\spaceskip is taken for all space factor values. If the \xspaceskip
is nonzero, it is taken (fourth line) instead of the \spaceskip for the
high value of the space factor.

20.4 Control space and tie
The control character \ , control space is a horizontal command which in-

serts a space, \ acting as if the current space factor is 1000. However, it does
not affect the value of \spacefactor.

Control space has two main uses. First, it is convenient to use after a con-
trol sequence: \TeX\ is fun! Secondly, it can be used after abbreviations when

20.5 More on the space factor 203

\nonfrenchspacing (see below) is in effect. For example:
\hbox spread 9pt{\nonfrenchspacing

The Reverend Dr. Drofnats}

gives

The Reverend Dr. Drofnats

while
\hbox spread 9pt{\nonfrenchspacing

The Reverend Dr.\ Drofnats}

gives

The Reverend Dr. Drofnats

(The spread 9pt is used to make the effect more visible.)
The active character (in the plain format) tilde or tie, ~, uses control space:

it is defined as
\catcode`\~=\active
\def~{\penalty10000\ }

Such an active tilde is called a ‘tie’; it inserts an ordinary amount of space, and
prohibits breaking at this space.

20.5 More on the space factor

20.5.1 Space factor assignments

The space factor of a particular character is contained in its spacefactor
code and can be assigned as

\sfcode⟨8-bit number⟩⟨equals⟩⟨number⟩

IniTEX assigns a space factor code of 1000 to all characters except upper-
case characters; they get a space factor code of 999. The plain format then
assigns space factor codes greater than 1000 to various punctuation symbols,
for instance \sfcode`\.=3000, which triples the stretch and shrink after a full
stop. Also, for all space factor values≥ 2000 the extra space is added; see above.

20.5.2 Punctuation

Because the space factor cannot jump from a value below 1000 to one above,
a punctuation symbol after an uppercase character will not have the effect on
the interword space that punctuation after a lowercase character has.

例子：

204 第 20 章 Spacing

a% \sfcode`a=1000, space factor becomes 1000
.% \sfcode`.=3000, spacefactor becomes 3000
% subsequent spaces will be increased.

A% \sfcode`A=999, space factor becomes 999
.% \sfcode`.=3000, space factor becomes 1000
% subsequent spaces will not be increased.

Thus, initials are not mistaken for sentence ends. If an uppercase character
does end a sentence, for instance

... and NASA.

there are several solutions:
... NASA\spacefactor=1000.

or
... NASA\hbox{}.

which abuses the fact that after a box the space factor is set to 1000. The LATEX
macro \@ is equivalent to the first possibility.

In the plain format two macros are defined that switch between uniform
interword spacing, frenchspacing, and extra space after punctuation, which is
more an American custom. The macro \frenchspacing sets the space factor
code of all punctuation to 1000; the macro \nonfrenchspacing sets it to values
greater than 1000.

Here are the actual definitions from plain.tex:
\def\frenchspacing{\sfcode`\.\@m \sfcode`\?\@m
\sfcode`\!\@m \sfcode`\:\@m
\sfcode`\;\@m \sfcode`\,\@m}

\def\nonfrenchspacing{\sfcode`\.3000 \sfcode`\?3000
\sfcode`\!3000 \sfcode`\:2000
\sfcode`\;1500 \sfcode`\,1250 }

where
\mathchardef\@m=1000

is given in the plain format.
French spacing is a somewhat controversial issue: the TEX book acts as if

non-French spacing is standard practice in printing, but for instance in [14] one
finds ‘The space of the line should be used after all points in normal text’. Extra
space after punctuation may be considered a ‘typewriter habit’, but this is not
entirely true. It used to be a lot more common than it is nowadays, and there
are rational arguments against it: the full stop (point, period) at the end of a
sentence, where extra punctuation is most visible, is rather small, so it carries
some extra visual space of its own above it. This book does not use extra space
after punctuation.

20.5 More on the space factor 205

20.5.3 Other non-letters

The zero value of the space factor code makes characters that are not a
letter and not punctuation ‘transparent’ for the space factor.

例子：

a% \sfcode`a=1000, space factor becomes 1000
.% \sfcode`.=3000, spacefactor becomes 3000
% subsequent spaces will be increased.

a% \sfcode`a=1000, space factor becomes 1000
.% \sfcode`.=3000, space factor becomes 3000
)% \sfcode`)=0, space factor stays 3000
% subsequent spaces will be increased.

20.5.4 Other influences on the space factor

The space factor is 1000 when TEX starts forming a horizontal list, in partic-
ular after \indent, \noindent, and directly after a display. It is also 1000 after
a \vrule, an accent, or a ⟨box⟩ (in horizontal mode), but it is not influenced by
\unhbox or \unhcopy commands.

In the first column of a \valign the space factor of the surrounding hori-
zontal list is carried over; similarly, after a vertical alignment the space factor
is set to the value reached in the last column.

第 21 章 Characters in Math Mode

In math mode every character specifies by its \mathcode what position of
a font to access, among other things. For delimiters this story is a bit more
complicated. This chapter explains the concept of math codes, and shows how
TEX implements variable size delimiters.

\mathcode Code of a character determining its treatment in math mode.

\mathchar Explicit denotation of a mathematical character.

\mathchardef Define a control sequence to be a synonym for a math character
code.

\delcode Code specifying how a character should be used as delimiter.

\delimiter Explicit denotation of a delimiter.

\delimiterfactor 1000 times the fraction of a delimited formula that should
be covered by a delimiter. Plain TEX default: 901

\delimitershortfall Size of the part of a delimited formula that is allowed
to go uncovered by a delimiter. Plain TEX default: 5pt

\nulldelimiterspace Width taken for empty delimiters. Plain TEX
default: 1.2pt

\left Use the following character as an open delimiter.

\right Use the following character as a closing delimiter.

\big One line high delimiter.

\Big One and a half line high delimiter.

\bigg Two lines high delimiter.

\Bigg Two and a half lines high delimiter.

\bigl etc. Left delimiters.

\bigm etc. Delimiters used as binary relations.

\bigr etc. Right delimiters.

206

21.1 Mathematical characters 207

\radical Command for setting things such as root signs.

\mathaccent Place an accent in math mode.

\skewchar Font position of an after-placed accent.

\defaultskewchar Value of \skewchar when a font is loaded.

\skew Macro to shift accents on top of characters explicitly.

\widehat Hat accent that can accommodate wide expressions.

\widetilde Tilde accent that can accommodate wide expressions.

21.1 Mathematical characters

Each of the 256 permissible character codes has an associated \mathcode,
which can be assigned by

\mathcode⟨8-bit number⟩⟨equals⟩⟨15-bit number⟩

When processing in math mode, TEX replaces all characters of categories 11
and 12, and \char and \chardef characters, by their associated mathcode.

The 15-bit math code is most conveniently denoted hexadecimally as "xyzz,
where

x ≤ 7 is the class (see page 219),
y is the font family number (see Chapter 22), and
zz is the position of the character in the font.

Math codes can also be specified directly by a ⟨math character⟩, which can
be

• \mathchar⟨15-bit number⟩;

• ⟨mathchardef token⟩, a control sequence that was defined by

\mathchardef⟨control sequence⟩⟨equals⟩⟨15-bit number⟩

or

• a delimiter command

\delimiter⟨27-bit number⟩

where the last 12 bits are discarded.

The commands \mathchar and \mathchardef are analogous to \char and \char-
def in text mode. Delimiters are treated below. A ⟨mathchardef token⟩ can be
used as a ⟨number⟩, even outside math mode.

In IniTEX all letters receive \mathcode "71zz and all digits receive "70zz,
where "zz is the hexadecimal position of the character in the font. Thus, letters

208 第 21 章 Characters in Math Mode

are initially from family 1 (math italic in plain TEX), and digits are from family 0
(roman). For all other characters, IniTEX assigns

\mathcodex = x,

thereby placing them also in family 0.
If the mathcode is "8000, the smallest integer that is not a ⟨15-bit number⟩,

the character is treated as an active character with the original character code.
Plain TEX assigns a \mathcode of "8000 to the space, underscore and prime.

21.2 Delimiters

After \left and \right commands TEX looks for a delimiter. A delimiter
is either an explicit \delimiter command (or a macro abbreviation for it), or a
character with a non-zero delimiter code.

The \left and \right commands implicitly delimit a group, which is con-
sidered as a subformula. Since the enclosed formula can be arbitrarily large,
the quest for the proper delimiter is a complicated story of looking at variants in
two different fonts, linked chains of variants in a font, and building extendable
delimiters from repeatable pieces.

The fact that a group enclosed in \left...\right is treated as an indepen-
dent subformula implies that a sub- or superscript at the start of this formula is
not considered to belong to the delimiter. For example, TEX acts as if \left(_2
is equivalent to \left({}_2. (A subscript after a \right delimiter is positioned
with respect to that delimiter.)

21.2.1 Delimiter codes

To each character code there corresponds a delimiter code, assigned by

\delcode⟨8-bit number⟩⟨equals⟩⟨24-bit number⟩

A delimiter code thus consists of six hexadecimal digits "uvvxyy, where

uvv is the small variant of the delimiter, and
xyy is the large variant;
u, x are the font families of the variants, and
vv, yy are the locations in those fonts.

Delimiter codes are used after \left and \right commands. IniTEX sets all
delimiter codes to −1, except \delcode`.=0, which makes the period an empty
delimiter. In plain TEX delimiters have typically u = 2 and x = 3, that is, first
family 2 is tried, and if no big enough delimiter turns up family 3 is tried.

21.2 Delimiters 209

21.2.2 Explicit \delimiter commands

Delimiters can also be denoted explicitly by a ⟨27-bit number⟩,
\delimiter"tuvvxyy

where uvvxyy are the small and large variant of the delimiter as above; the
extra digit t (which is < 8) denotes the class (see page 219). For instance, the
\langle macro is defined as

\def\langle{\delimiter "426830A }

which means it belongs to class 4, opening. Similarly, \rangle is of class 5,
closing; and \uparrow is of class 3, relation.

After \left and \right – that is, when TEX is looking for a delimiter – the
class digit is ignored; otherwise – when TEX is not looking for a delimiter – the
rightmost three digits are ignored, and the four remaining digits are treated as
a \mathchar; see above.

21.2.3 Finding a delimiter; successors

Typesetting a delimiter is a somewhat involved affair. First TEX deter-
mines the size y of the formula to be covered, which is twice the maximum of
the height and depth of the formula. Thus the formula may not look optimal if
it is not centred itself.

The size of the delimiter should be at least \delimiterfactor × y/1000

and at least y − \delimitershortfall. TEX then tries first the small variant,
and if that one is not satisfactory (or if the uvv part of the delimiter is 000) it
tries the large variant. If trying the large variant does not meet with success,
TEX takes the largest delimiter encountered in this search; if no delimiter at
all was found (which can happen if the xyy part is also 000), an empty box of
width \nulldelimiterspace is taken.

Investigating a variant means, in sequence,

• if the current style (see page 217) is scriptscriptstyle, the \scriptscriptfont
of the family is tried;

• if the current style is scriptstyle or smaller, the \scriptfont of the family
is tried;

• otherwise the \textfont of the family is tried.

The plain format puts the cmex10 font in all three styles of family 3.
Looking for a delimiter at a certain position in a certain font means

• if the character is large enough, accept it;

• if the character is extendable, accept it;

210 第 21 章 Characters in Math Mode

• otherwise, if the character has a successor, that is, it is part of a chain of
increasingly bigger delimiters in the same font, try the successor.

Information about successors and extensibility of a delimiter is coded in the font
metric file of the font. An extendable character has a top, a bottom, possibly
a mid piece, and a piece which is repeated directly below the top piece, and
directly above the bottom piece if there is a mid piece.

21.2.4 \big, \Big, \bigg, and \Bigg delimiter macros

In order to be able to use a delimiter outside the \left...\right context,
or to specify a delimiter of a different size than TEX would have chosen, four
macros for ‘big’ delimiters exist: \big, \Big, \bigg, and \Bigg. These can be
used with anything that can follow \left or \right.

Twelve further macros (for instance \bigl, \bigm, and \bigr) force such
delimiters in the context of an opening symbol, a binary relation, and a closing
symbol respectively:

\def\bigl{\mathopen\big}
\def\bigm{\mathrel\big} \def\bigr{\mathclose\big}

The ‘big’ macros themselves put the requested delimiter and a null delim-
iter around an empty vertical box:

\def\big#1{{\nulldelimiterspace=0pt \mathsurround=0pt
\hbox{$\left#1\vbox to 8.5pt{}\right.$}}}

As an approximate measure, the Big delimiters are one and a half times as
large (11.5pt) as big delimiters; bigg ones are twice (14.5pt), and Bigg ones are
two and a half times as large (17.5pt).

21.3 Radicals
A radical is a compound of a left delimiter and an overlined math expres-

sion. The overlined expression is set in the cramped version of the surrounding
style (see page 217).

In the plain format and the Computer Modern math fonts there is only one
radical: the square root construct

\def\sqrt{\radical"270370 }

The control sequence \radical is followed by a ⟨24-bit number⟩ which specifies
a small and a large variant of the left delimiter as was explained above. Joining
the delimiter and the rule is done by letting the delimiter have a large depth,
and a height which is equal to the desired rule thickness. The rule can then
be placed on the current baseline. After the delimiter and the ruled expression

21.4 Math accents 211

have been joined the whole is shifted vertically to achieve the usual vertical
centring (see Chapter 23).

21.4 Math accents
Accents in math mode are specified by

\mathaccent⟨15-bit number⟩⟨math field⟩
Representing the 15-bit number as "xyzz, only the family y and the character
position zz are used: an accented expression acts as \mathord expression (see
Chapter 23).

In math mode whole expressions can be accented, whereas in text mode
only characters can be accented. Thus in math mode accents can be stacked.
However, the top accent may (or, more likely, will) not be properly positioned
horizontally. Therefore the plain format has a macro \skew that effectively
shifts the top accent. Its definition is

\def\skew#1#2#3{{#2{#3\mkern#1mu}\mkern-#1mu}{}}

and it is used for instance like
$\skew4\hat{\hat x}$

which gives ˆ̂x.
For the correct positioning of accents over single characters the symbol

and extension font have a \skewchar: this is the largest accent that adds to the
width of an accented character. Positioning of any accent is based on the width
of the character to be accented, followed by the skew character.

The skew characters of the Computer Modern math italic and symbol fonts
are character "7F, ‘Ä’, and"30, ‘0’, respectively. The \defaultskewchar value is
assigned to the \skewchar when a font is loaded. In plain TEX this is -1, so fonts
ordinarily have no \skewchar.

Math accents can adapt themselves to the size of the accented expression:
TEX will look for a successor of an accent in the same way that it looks for a
successor of a delimiter. In the Computer Modern math fonts this mechanism
is used in the \widehat and \widetilde macros. For example,

\widehat x, \widehat{xy}, \widehat{xyz}

give

x̂, x̂y, x̂yz

respectively.

第 22 章 Fonts in Formulas

For math typesetting a single current font is not sufficient, as it is for text
typesetting. Instead TEX uses several font families, and each family can contain
three fonts. This chapter explains how font families are organized, and how TEX
determines from what families characters should be taken.

\fam The number of the current font family.

\newfam Allocate a new math font family.

\textfont Access the textstyle font of a family.

\scriptfont Access the scriptstyle font of a family.

\scriptscriptfont Access the scriptscriptstyle font of a family.

22.1 Determining the font of a character in math mode
The characters in math formulas can be taken from several different fonts

(or better, font families) without any user commands. For instance, in plain
TEX math formulas use the roman font, the math italic font, the symbol font
and the math extension font.

In order to determine from which font a character is to be taken, TEX consid-
ers for each character in a formula its \mathcode (this is treated in Chapter 21).
A \mathcode is a 15-bit number of the form "xyzz, where the hex digits have
the following meaning:

x: class,
y: family,
zz: position in font.

In general only the family determines from what font a character is to be
taken. The class of a math character is mostly used to control spacing and other
aspects of typesetting. Typical classes include ‘relation’, ‘operator’, ‘delimiter’;
see section 23.3 for details.

212

22.2 Initial family settings 213

Class 7 is special in this respect: it is called ‘variable family’. If a character
has a \mathcode of the form "7yzz it is taken from family y, unless the param-
eter \fam has a value in the range 0–15; then it is taken from family \fam.

22.2 Initial family settings

Both lowercase and uppercase letters are defined by IniTEX to have math
codes "71zz, which means that they are of variable family, initially from fam-
ily 1. As TEX sets fam=-1, that is, an invalid value, when a formula starts,
characters are indeed taken from family 1, which in plain TEX is math italic.

Digits have math code "70zz so they are initially from family 0, in plain
TEX the roman font. All other character codes have a mathcode assigned by
IniTEX as

\mathcodex = x

which puts them in class 0, ordinary, and family 0, roman in plain TEX.
In plain TEX, commands such as \sl then set both a font and a family:
\def\sl{\fam\slfam\tensl}

so putting \sl in a formula will cause all letters, digits, and uppercase Greek
characters, to change to slanted style.

In most cases, any font can be assigned to any family, but two families
in TEX have a special meaning: these are families 2 and 3. For instance, their
number of \fontdimen parameters is different from the usual 7. Family 2 needs
22 parameters, and family 3 needs 13. These parameters have all a very special-
ized meaning for positioning in math typesetting. Their meaning is explained
below, but for the full story the reader is referred to appendix G of the TEX book.

22.3 Family definition

TEX can access 16 families of fonts in math mode; font families have num-
bers 0–15. The number of the current family is recorded in the parameter \fam.

The macro \newfam gives the number of an unused family. This number is
assigned using \chardef to the control sequence.

Each font family can have a font meant for text style, script style, and
scriptscript style. Below it is explained how TEX determines in what style a
(sub-) formula is to be typeset.

Fonts are assigned to a family as follows:

214 第 22 章 Fonts in Formulas

\newfam\MyFam
\textfont\MyFam=\tfont \scriptfont\MyFam=\sfont
\scriptscriptfont\MyFam=\ssfont

for the text, script, and scriptscript fonts of a family. In general it is not neces-
sary to fill all three members of a family (but it is for family 3). If TEX needs a
character from a family member that has not been filled, it uses the \nullfont
instead, a primitive font that has no characters (nor a .tfm file).

22.4 Some specific font changes

22.4.1 Change the font of ordinary characters and uppercase Greek

All letters and the uppercase Greek characters are by default in plain TEX
of class 7, variable family, so changing \fam will change the font from which
they are taken. For example

{\fam=9 x}

gives an x from family 9.
Uppercase Greek characters are defined by \mathchardef statements in

the plain format as "70zz, that is, variable family, initially roman. Therefore,
uppercase Greek character also change with the family.

22.4.2 Change uppercase Greek independent of text font

In the Computer Modern font layout, uppercase Greek letters are part of
the roman font; see page 327. Therefore, introducing another text font (with
another layout) will change the uppercase Greek characters (or even make
them disappear). One way of remedying this is by introducing a new family
in which the cmr font, which contains the uppercase Greek, resides. The con-
trol sequences accessing these characters then have to be redefined:

\newfam\Kgreek
\textfont\Kgreek=cmr10 ...
\def\hex#1{\ifcase#10\or 1\or 2\or 3\or 4\or 5\or 6\or

7\or 8\or 9\or A\or B\or C\or D\or E\or F\fi}
\mathchardef\Gamma="0\hex\Kgreek00 % was: "0100
\mathchardef\Beta ="0\hex\Kgreek01 % was: "0101
\mathchardef\Gamma ...

Note, by the way, the absence of a either a space or a \relax token after #1 in
the definition of \hex. This implies that this macro can only be called with an
argument that is a control sequence.

22.5 Assorted remarks 215

22.4.3 Change the font of lowercase Greek and mathematical symbols

Lowercase Greek characters have math code "01zz, meaning they are al-
ways from the math italic family. In order to change this one might rede-
fine them, for instance \mathchardef\alpha=10B, to make them variable family.
This is not done in plain TEX, because the Computer Modern roman font does
not have Greek lowercase, although it does have the uppercase characters.

Another way is to redefine them like \mathchardef\alpha="0n0B where n is
the (hexadecimal) number of a family compatible with math italic, containing
for instance a bold math italic font.

22.5 Assorted remarks

22.5.1 New fonts in formulas

There are two ways to access a font inside mathematics. After \font\newfont=....
it is not possible to get the ‘a’ of the new font by $...{\newfont a}...$ because
TEX does not look at the current font in math mode. What does work is

$... \hbox{\newfont a} ...$

but this precludes the use of the new font in script and scriptscript styles.
The proper solution takes a bit more work:
\font\newtextfont=...
\font\newscriptfont=... \font\newsscriptfont=...
\newfam\newfontfam
\textfont\newfontfam=\newtextfont
\scriptfont\newfontfam=\newscriptfont
\scriptscriptfont\newfontfam=\newsscriptfont
\def\newfont{\newtextfont \fam=\newfontfam}

after which the font can be used as
$... {\newfont a_{b_c}} ...$

in all three styles.

22.5.2 Evaluating the families

TEX will only look at what is actually in the \textfont et cetera of the
various families at the end of the whole formula. Switching fonts in the families
is thus not possible inside a single formula. The number of 16 families may
therefore turn out to be restrictive for some applications.

第 23 章 Mathematics Typesetting

TEX has two math modes, display and non-display, and four styles, display,
text, script, and scriptscript style, and every object in math mode belongs to one
of eight classes. This chapter treats these concepts.

\everymath Token list inserted at the start of a non-display formula.

\everydisplay Token list inserted at the start of a display formula.

\displaystyle Select the display style of mathematics typesetting.

\textstyle Select the text style of mathematics typesetting.

\scriptstyle Select the script style of mathematics typesetting.

\scriptscriptstyle Select the scriptscript style of mathematics typesetting.

\mathchoice Give four variants of a formula for the four styles of
mathematics typesetting.

\mathord Let the following character or subformula function as an ordinary
object.

\mathop Let the following character or subformula function as a large
operator.

\mathbin Let the following character or subformula function as a binary
operation.

\mathrel Let the following character or subformula function as a relation.

\mathopen Let the following character or subformula function as a opening
symbol.

\mathclose Let the following character or subformula function as a closing
symbol.

\mathpunct Let the following character or subformula function as a
punctuation symbol.

\mathinner Let the following character or subformula function as an inner
formula.

216

217

\mathaccent Place an accent in math mode.

\vcenter Construct a vertical box, vertically centred on the math axis.

\limits Place limits over and under a large operator.

\nolimits Place limits of a large operator as subscript and superscript
expressions.

\displaylimits Restore default placement for limits.

\scriptspace Extra space after subscripts and superscripts. Plain TEX
default: 0.5pt

\nonscript Cancel the next glue item if it occurs in scriptstyle or
scriptscriptstyle.

\mkern Insert a kern measured in mu units.

\mskip Insert glue measured in mu units.

\muskip Prefix for skips measured in mu units.

\muskipdef Define a control sequence to be a synonym for a \muskip register.

\newmuskip Allocate a new muskip register.

\thinmuskip Small amount of mu glue.

\medmuskip Medium amount of mu glue.

\thickmuskip Large amount of mu glue.

\mathsurround Kern amount placed before and after in-line formulas.

\over Fraction.

\atop Place objects over one another.

\above Fraction with specified bar width.

\overwithdelims Fraction with delimiters.

\atopwithdelims Place objects over one another with delimiters.

\abovewithdelims Generalized fraction with delimiters.

\underline Underline the following ⟨math symbol⟩ or group.

\overline Overline the following ⟨math symbol⟩ or group.

\relpenalty Penalty for breaking after a binary relation not enclosed in a
subformula. Plain TEX default: 500

\binoppenalty Penalty for breaking after a binary operator not enclosed in a
subformula. Plain TEX default: 700

\allowbreak Macro for creating a breakpoint.

218 第 23 章 Mathematics Typesetting

23.1 Math modes
TEX changes to math mode when it encounters a math shift character, cat-

egory 3, in the input. After such an opening math shift it investigates (without
expansion) the next token to see whether this is another math shift. In the
latter case TEX starts processing in display math mode until a closing double
math shift is encountered:

.. $$ displayed formula $$..

Otherwise it starts processing an in-line formula in non-display math mode:

.. $ in-line formula $..

The single math shift character is a ⟨horizontal command⟩.
Exception: displays are not possible in restricted horizontal mode, so in-

side an \hbox the sequence $$ is an empty math formula and not the start of a
displayed formula.

Associated with the two math modes are two ⟨token parameter⟩ registers
(see also Chapter 14): at the start of an in-line formula the \everymath tokens
are inserted; at the start of a displayed formula the \everydisplay tokens are
inserted. Display math is treated further in the next chapter.

Math modes can be tested for: \ifmmode is true in display and non-display
math mode, and \ifinner is true in non-display mode, but not in display mode.

23.2 Styles in math mode
Math formulas are set in any of eight math styles:

D display style,

T text style,

S script style,

SS scriptscript style,

and the four crampedcramped styles variants D′, T ′, S′, SS′ of these. The
cramped styles differ mainly in the fact that superscripts are not raised as far
as in the original styles.

23.2.1 Superscripts and subscripts

TEX can typeset a symbol or group as a superscript (or subscript) to the
preceding symbol or group, if that preceding item does not already have a su-
perscript (subscript). Superscripts (subscripts) are specified by the syntax

23.2 Styles in math mode 219

⟨superscript⟩⟨math field⟩

or

⟨subscript⟩⟨math field⟩

where a ⟨superscript⟩ (⟨subscript⟩) is either a character of category 7 (8), or a
control sequence \let to such a character. The plain format has the control
sequences

\let\sp=^ \let\sb=_

as implicit superscript and subscript characters.
Specifying a superscript (subscript) expression as the first item in an empty

math list is equivalent to specifying it as the superscript (subscript) of an empty
expression. For instance,

$^{...} is equivalent to ${}^{...}

For TEX’s internal calculations, superscript and subscript expressions are
made wider by \scriptspace; the value of this in plain TEX is 0.5pt.

23.2.2 Choice of styles

Ordering the four styles D, T , S, and SS, and considering the other four as
mere variants, the style rules for math mode are as follows:

• In any style superscripts and subscripts are taken from the next smaller
style. Exception: in display style they are taken in script style.

• Subscripts are always in the cramped variant of the style; superscripts are
only cramped if the original style was cramped.

• In an {..\over..} formula in any style the numerator and denominator
are taken from the next smaller style.

• The denominator is always in cramped style; the numerator is only in
cramped style if the original style was cramped.

• Formulas under a \sqrt or \overline are in cramped style.

Styles can be forced by the explicit commands \displaystyle, \textstyle,
\scriptstyle, and \scriptscriptstyle.

In display style and text style the \textfont of the current family is used, in
scriptstyle the \scriptfont is used, and in scriptscriptstyle the \scriptscriptfont
is used.

The primitive command

\mathchoice{D}{T}{S}{SS}

lets the user specify four variants of a formula for the four styles. TEX constructs
all four and inserts the appropriate one.

220 第 23 章 Mathematics Typesetting

23.3 Classes of mathematical objects
Objects in math mode belong to one of eight math classes. Depending on the

class the object may be surrounded by some amount of white space, or treated
specially in some way. Commands exist to force symbols, or sequences of sym-
bols, to act as belonging to a certain class. In the hexadecimal representation
"xyzz the class is the ⟨3-bit number⟩ x.

This is the list of classes and commands that force those classes. The ex-
amples are from the plain format (see the tables starting at page 332).

1. ordinary: lowercase Greek characters and those symbols that are ‘just sym-
bols’; the command \mathord forces this class.

2. large operator: integral and sum signs, and ‘big’ objects such as \bigcap or
\bigotimes; the command \mathop forces this class. Characters that are
large operators are centred vertically, and they may behave differently in
display style from in the other styles; see below.

3. binary operation: plus and minus, and things such as \cap or \otimes; the
command \mathbin forces this class.

4. relation (also called binary relation): equals, less than, and greater than
signs, subset and superset, perpendicular, parallel; the command \mathrel
forces this class.

5. opening symbol: opening brace, bracket, parenthesis, angle, floor, ceiling;
the command \mathopen forces this class.

6. closing symbol: closing brace, bracket, parenthesis, angle, floor, ceiling;
the command \mathclose forces this class.

7. punctuation: most punctuation marks, but : is a relation, the \colon is a
punctuation colon; the command \mathpunct forces this class.

8. variable family: symbols in this class change font with the \fam parameter;
in plain TEX uppercase Greek letters and ordinary letters and digits are in
this class.

There is one further class: the inner subformulas. No characters can be
assigned to this class, but characters and subformulas can be forced into it by
\mathinner. The ⟨generalized fraction⟩s and \left...\right groups are inner
formulas. Inner formulas are surrounded by some white space; see the table
below.

Other subformulas than those that are inner are treated as ordinary sym-
bols. In particular, subformulas enclosed in braces are ordinary: $a+b$ looks
like ‘a+ b’, but $a{+}b$ looks like ‘a+b’. Note, however, that in ${a+b}$ the

23.4 Large operators and their limits 221

whole subformula is treated as an ordinary symbol, not its components; there-
fore the result is ‘a + b’.

23.4 Large operators and their limits

The large operators in the Computer Modern fonts come in two sizes: one
for text style and one for display style. Control sequences such as \sum are
simply defined by \mathchardef to correspond to a position in a font:

\mathchardef\sum="1350

but if the current style is display style, TEX looks to see whether that character
has a successor in the font.

Large operators in text style behave as if they are followed by \nolimits,
which places the limits as sub/superscript expressions after the operator:∑∞

k=1

In display style they behave as if they are followed by \limits, which places
the limits over and under the operator:

∞∑
k=1

The successor mechanism (see page 208) lets TEX take a larger variant of the
delimiter here.

The integral sign has been defined in plain TEX as
\mathchardef\intop="1352 \def\int{\intop\nolimits}

which places the limits after the operator, even in display style:∫ ∞

0

e−x2

dx =
√
π/2

With \limits\nolimits or \nolimits\limits the last specification has prece-
dence; the default placement can be restored by \displaylimits. For instance,

$... \sum\limits\displaylimits ... $

is equivalent to
$... \sum ... $

and
$$... \sum\nolimits\displaylimits ... $$

is equivalent to
$$... \sum ... $$

222 第 23 章 Mathematics Typesetting

23.5 Vertical centring: \vcenter

Each formula has an axis, which is for an in-line formula about half the x-
height of the surrounding text; the exact value is the \fontdimen22 of the font
in family 2, the symbol font, in the current style.

The bar line in fractions is placed on the axis; large operators, delimiters
and \vcenter boxes are centred on it.

A \vcenter box is a vertical box that is arranged so that it is centred on
the math axis. It is possible to give a spread or to specification with a \vcenter
box.

The \vcenter box is allowed only in math mode, and it does not behave
like other boxes; for instance, it can not be stored in a box register. It does not
qualify as a ⟨box⟩. See page 146 for a macro that repairs this.

23.6 Mathematical spacing: mu glue

Spacing around mathematical objects is measured in math units: multiples
of a mu. A mu is 1/18th part of \fontdimen6 of the font in family 2 in the current
style, the quad value of the symbol font.

23.6.1 Classification of mu glue

The user can specify mu spacing by \mkern or \mskip, but most mu glue is
inserted automatically by TEX, based on the classes to which objects belong (see
above). First, here are some rules of thumb describing the global behaviour.

• A \thickmuskip (default value in plain TEX: 5mu plus 5mu) is inserted
around (binary) relations, except where these are preceded or followed by
other relations or punctuation, and except if they follow an open, or precede
a close symbol.

• A \medmuskip (default value in plain TEX: 4mu plus 2mu minus 4mu) is put
around binary operators.

• A \thinmuskip (default value in plain TEX: 3mu) follows after punctuation,
and is put around inner objects, except where these are followed by a close
or preceded by an open symbol, and except if the other object is a large
operator or a binary relation.

• No mu glue is inserted after an open or before a close symbol except where
the latter is preceded by punctuation; no mu glue is inserted also before

23.6 Mathematical spacing: mu glue 223

punctuation, except where the preceding object is punctuation or an inner
object.

The following table gives the complete definition of mu glue between math
objects.

0: 1: 2: 3: 4: 5: 6:
Ord Op Bin Rel Open Close Punct Inner

0: Ord 0 1 (2) (3) 0 0 0 (1)
1: Op 1 1 * (3) 0 0 0 (1)
2: Bin (2) (2) * * (2) * * (2)
3: Rel (3) (3) * 0 (2) * * (2)
4: Open 0 0 * 0 0 0 0 0
5: Close 0 1 (2) (3) 0 0 0 (1)
6: Punct (1) (1) * (1) (1) (1) (1) (1)

Inner (1) 1 (2) (3) (1) 0 (1) (1)

where the symbols have the following meanings:

• 0, no space; 1, thin space; 2, medium space; 3, thick space;

• (·), insert only in text and display mode, not in script or scriptscript mode;

• cases * cannot occur, because a Bin object is converted to Ord if it is the
first in the list, preceded by Bin, Op, Open, Punct, Rel, or followed by Close,
Punct, and Rel; also, a Rel is converted to Ord when it is followed by Close
or Punct.

Stretchable mu glue is set according to the same rules that govern ordinary
glue. However, only mu glue on the outer level can be stretched or shrunk; any
mu glue enclosed in a group is set at natural width.

23.6.2 Muskip registers

Like ordinary glue, mu glue can be stored in registers, the \muskip registers,
of which there are 256 in TEX. The registers are denoted by

\muskip⟨8-bit number⟩

and they can be assigned to a control sequence by

\muskipdef⟨control sequence⟩⟨equals⟩⟨8-bit number⟩

and there is a macro that allocates unused registers:

\newmuskip⟨control sequence⟩

Arithmetic for mu glue exists as for glue; see Chapter 8.

224 第 23 章 Mathematics Typesetting

23.6.3 Other spaces in math mode

In math mode space tokens are ignored; however, the math code of the
space character is "8000 in plain TEX, so if its category is made ‘letter’ or ‘other
character’, it will behave like an active character in math mode. See also page 207.

Admissible glue in math mode is of type ⟨mathematical skip⟩, which is ei-
ther a ⟨horizontal skip⟩ (see Chapter 6) or \mskip⟨muglue⟩. Leaders in math
mode can be specified with a ⟨mathematical skip⟩.

A glue item preceded by \nonscript is cancelled if it occurs in scriptstyle
or scriptscriptstyle.

Control space functions in math mode as it does in horizontal mode.

In-line formulas are surrounded by kerns of size \mathsurround, the so-
called ‘math-on’ and ‘math-off’ items. Line breaking can occur at the front of
the math-off kern if it is followed by glue.

23.7 Generalized fractions

Fraction-like objects can be set with six primitive commands of type ⟨generalized
fraction⟩. Each of these generalized fractions takes the preceding and the fol-
lowing subformulas and puts them over one another, if necessary with a fraction
bar and with delimiters.

\over is the ordinary fraction; the bar thickness is \fontdimen8 of the extension
font:

$\pi\over2$ gives ‘π2 ’

\atop is equivalent to a fraction with zero bar thickness:

$\pi\atop2$ gives ‘π2 ’

\above⟨dimen⟩ specifies the thickness of the bar line explicitly:

$\pi\above 1pt 2$ gives ‘π
2

’

To each of these three there corresponds a \...withdelims variant that lets
the user specify delimiters for the expression. For example, the most general
command, in terms of which all five others could have been defined, is

\abovewithdelims⟨delim1⟩⟨delim2⟩⟨dimen⟩.

Delimiters in these generalized fractions do not grow with the enclosed expres-
sion: in display mode a delimiter is taken which is at least \fontdimen20 high,
otherwise it has to be at least \fontdimen21 high. These dimensions are taken
from the font in family 2, the symbol font, in the current style.

23.8 Underlining, overlining 225

The control sequences \over, \atop, and \above are primitives, although
they could have been defined as \...withdelims.., that is, with two null delim-
iters. Because of these implied surrounding null delimiters, there is a kern of
size \nulldelimiterspace before and after these simple generalized fractions.

23.8 Underlining, overlining
The primitive commands \underline and \overline take a ⟨math field⟩

argument, that is, a ⟨math symbol⟩ or a group, and draw a line under or over
it. The result is an ‘Under’ or ‘Over’ atom, which is appended to the current
math list. The line thickness is font dimension 8 of the extension font, which
also determines the clearance between the line and the ⟨math field⟩.

Various other \over... and \under... commands exist in plain TEX; these
are all macros that use the TEX \halign command.

23.9 Line breaking in math formulas
In-line formulas can be broken after relations and binary operators. The re-

spective penalties are the \relpenalty and the \binoppenalty. However, TEX
will only break after such symbols if they are not enclosed in braces. Other
breakpoints can be created with \allowbreak, which is an abbreviation for \penalty0.

Unlike in horizontal or vertical mode where putting two penalties in a row
is equivalent to just placing the smallest one, in math mode a penalty placed
at a break point – that is, after a relation or binary operator – will effectively
replace the old penalty by the new one.

23.10 Font dimensions of families 2 and 3
If a font is used in text mode, TEX will look at its first 7 \fontdimen param-

eters (see page 53), for instance to control spacing. In math, however, more font
dimensions are needed. TEX will look at the first 22 parameters of the fonts in
family 2, and the first 13 of the fonts in family 3, to control various aspects of
math typesetting. The next two subsections have been quoted loosely from [3].

23.10.1 Symbol font attributes

Attributes of the font in family 2, the symbol font, mainly specify the ini-
tial vertical positioning of parts of fractions, subscripts, superscripts, et cetera.

226 第 23 章 Mathematics Typesetting

The position determined by applying these attributes may be further modified
because of other conditions, for example the presence of a fraction bar.

One text font dimension, number 6, the quad, determines the size of mu
glue; see above.

Fraction numerator attributes: minimum shift up, from the main baseline,
of the baseline of the numerator of a generalized fraction,

8. num1: for display style,

9. num2: for text style or smaller if a fraction bar is present,

10. num3: for text style or smaller if no fraction bar is present.

Fraction denominator attributes: minimum shift down, from the main base-
line, of the baseline of the denominator of a generalized fraction,

11. denom1: for display style,

12. denom2: for text style or smaller.

Superscript attributes: minimum shift up, from the main baseline, of the
baseline of a superscript,

13. sup1: for display style,

14. sup2: for text style or smaller, non-cramped,

15. sup3: for text style or smaller, cramped.

Subscript attributes: minimum shift down, from the main baseline, of the
baseline of a subscript,

16. sub1: when no superscript is present,

17. sub2: when a superscript is present.

Script adjustment attributes: for use only with non-glyph, that is, compos-
ite, objects.

18. sup_drop: maximum distance of superscript baseline below top of nucleus

19. sub_drop: minimum distance of subscript baseline below bottom of nucleus.

Delimiter span attributes: height plus depth of delimiter enclosing a gen-
eralized fraction,

20. delim1: in display style,

21. delim2: in text style or smaller.

A parameter with many uses, the height of the math axis,

22. axis_height: the height above the baseline of the fraction bar, and the cen-
tre of large delimiters and most operators and relations. This position is
used in vertical centring operations.

23.10 Font dimensions of families 2 and 3 227

23.10.2 Extension font attributes

Attributes of the font in family 3, the extension font, mostly specify the way
the limits of large operators are set.

The first parameter, number 8, default_rule_thickness, serves many pur-
poses. It is the thickness of the rule used for overlines, underlines, radical ex-
tenders (square root), and fraction bars. Various clearances are also specified
in terms of this dimension: between the fraction bar and the numerator and
denominator, between an object and the rule drawn by an underline, overline,
or radical, and between the bottom of superscripts and top of subscripts.

Minimum clearances around large operators are as follows:

9. big_op_spacing1: minimum clearance between baseline of upper limit and
top of large operator; see below.

10. big_op_spacing2: minimum clearance between bottom of large operator
and top of lower limit.

11. big_op_spacing3: minimum clearance between baseline of upper limit and
top of large operator, taking into account depth of upper limit; see below.

12. big_op_spacing4: minimum clearance between bottom of large operator
and top of lower limit, taking into account height of lower limit; see be-
low.

13. big_op_spacing5: clearance above upper limit or below lower limit of a large
operator.

The resulting clearance above an operator is the maximum of parameter 7, and
parameter 11 minus the depth of the upper limit. The resulting clearance below
an operator is the maximum of parameter 10, and parameter 12 minus the
height of the lower limit.

23.10.3 Example: subscript lowering

The location of a subscript depends on whether there is a superscript; for
instance

X1 + Y 2
1 = 1

If you would rather have that look like

X1 + Y 2
1 = 1,

it suffices to specify
\fontdimen16\textfont2=3pt \fontdimen17\textfont2=3pt

which makes the subscript drop equal in both cases. Since font dimension as-
signments are global, you have to specify this only once in your document.

第 24 章 Display Math

Displayed formulas are set on a line of their own, usually somewhere in a
paragraph. This chapter explains how surrounding white space (both above/below
and to the left/right) is calculated.

\abovedisplayskip \belowdisplayskip Glue above/below a display. Plain
TEX default: 12pt plus 3pt minus 9pt

\abovedisplayshortskip \belowdisplayshortskip Glue above/below a
display if the line preceding the display was short. Plain TEX
defaults: 0pt plus 3pt and 7pt plus 3pt minus 4pt respectively.

\predisplaypenalty \postdisplaypenalty Penalty placed in the vertical list
above/below a display. Plain TEX defaults: 10 000 and 0 respectively.

\displayindent Distance by which the box, in which the display is centred, is
indented owing to hanging indentation.

\displaywidth Width of the box in which the display is centred.

\predisplaysize Effective width of the line preceding the display.

\everydisplay Token list inserted at the start of a display.

\eqno Place a right equation number in a display formula.

\leqno Place a left equation number in a display formula.

24.1 Displays

TEX starts building a display math formula when it encounters two math
shift characters (characters of category 3, $ in plain TEX) in a row. Another such
pair (possibly followed by one optional space) indicates the end of the display.

Math shift is a ⟨horizontal command⟩, but displays are only allowed in un-
restricted horizontal mode ($$ is an empty math formula in restricted horizontal
mode). Displays themselves, however, are started in the surrounding (possibly

228

24.2 Displays in paragraphs 229

internal) vertical mode in order to calculate quantities such as \prevgraf; the
result of the display is appended to the vertical list.

The part of the paragraph above the display is broken into lines as an inde-
pendent paragraph (but \prevgraf is carried over; see below), and the remain-
der of the paragraph is set, starting with an empty list and \spacefactor equal
to 1000. The \everypar tokens are not inserted for the part of the paragraph
after the display, nor is \parskip glue inserted.

Right at the beginning of the display the \everydisplay token list is in-
serted (but after the calculation of \displayindent, \displaywidth, and \predisplaysize).
See page 231 for an example of the use of \everydisplay.

The page builder is exercised before the display (but after the \everydisplay
tokens have been inserted), and after the display finishes.

The ‘display style’ of math typesetting was treated in Chapter 22.

24.2 Displays in paragraphs

Positioning of a display in a paragraph may be influenced by hanging in-
dentation or a \parshape specification. For this, TEX uses the \prevgraf pa-
rameter (see Chapter 18), and acts as if the display is three lines deep.

If n is the value of \prevgraf when the display starts – so there are n lines
of text above the display – \prevgraf is set to to n + 3 when the paragraph
resumes. The display occupies, as it were, lines n+1, n+2, and n+3. The shift
and line width for the display are those that would hold for line n + 2.

The shift for the display is recorded in \displayindent; the line width is
recorded in
\displaywidth. These parameters (and the \predisplaysize explained below)
are set immediately after the $$ has been scanned. Usually they are equal to
zero and \hsize respectively. The user can change the values of these param-
eters; TEX will use the values that hold after the math list of the display has
been processed.

A display is vertical material, and therefore not influenced by settings of
\leftskip and \rightskip.

24.3 Vertical material around displays

A display is preceded in the vertical list by

• a penalty of size \predisplaypenalty (plain TEX default 10 000), and

230 第 24 章 Display Math

• glue of size \abovedisplayskip or \abovedisplayshortskip; this glue is
omitted in cases where a \leqno equation number is set on a line of its own
(see below).

A display is followed by

• a penalty of size \postdisplaypenalty (default 0), and possibly

• glue of size \belowdisplayskip or \belowdisplayshortskip; this glue is
omitted in cases where an \eqno equation number is set on a line of its own
(see below).

The ‘short’ variants of the glue are taken if there is no \leqno left equa-
tion number, and if the last line of the paragraph above the display is short
enough for the display to be raised a bit without coming too close to that line.
In order to decide this, the effective width of the preceding line is saved in
\predisplaysize. This value is calculated immediately after the opening $$ of
the display has been scanned, together with the \displaywidth and \displayindent
explained above.

Remembering that the part of the paragraph above the display has already
been broken into lines, the following method for finding the effective width of
the last line ensues. TEX takes the last box of the list, which is a horizontal
box containing the last line, and locates the right edge of the last box in it. The
\predisplaysize is then the place of that rightmost edge, plus any amount by
which the last line was shifted, plus two ems in the current font.

There are two exceptions to this. The \predisplaysize is taken to be−\maxdimen
if there was no previous line, that is, the display started the paragraph, or
it followed another display; \predisplaysize is taken to be \maxdimen if the
glue in the last line was not set at its natural width, which may happen if the
\parfillskip contained only finite stretch. The reason for the last clause is
that glue setting is slightly machinedependent, and such dependences should
be kept out of TEX’s global decision processes.

24.4 Glue setting of the display math list
The display has to fit in \displaywidth, but in addition to the formula there

may be an equation number. The minimum separation between the formula
and the equation number should be one em in the symbol font, that is, \font-
dimen6\textfont2.

If the formula plus any equation number and separation fit into \displaywidth,
the glue in the formula is set at its natural width. If it does not fit, but the
formula contains enough shrink, it is shrunk. Otherwise TEX puts any equa-

24.5 Centring the display formula: displacement 231

tion number on a line of its own, and the glue in the formula is set to fit it in
\displaywidth. With the equation number on a separate line the formula may
now very well fit in the display width; however, if it was a very long formula
the box in which it is set may still be overfull. TEX nevers breaks a displayed
formula.

24.5 Centring the display formula: displacement

Based on the width of the box containing the formula – which may not
really ‘contain’ it; it may be overfull – TEX tries to centre the formula in the
\displaywidth, that is, without taking the equation number into account. Ini-
tially, a displacement is calculated that is half the difference between \displaywidth
and the width of the formula box.

However, if there is an equation number that will not be put on a separate
line and the displacement is less than twice the width of the equation number,
a new displacement is calculated. This new displacement is zero if the formula
started with glue; otherwise it is such that the formula box is centred in the
space left by the equation number.

If there was no equation number, or if the equation number will be put on
a separate line, the formula box is now placed, shifted right by \displayindent
plus the displacement calculated above.

24.6 Equation numbers

The user can specify a equation number for a display by ending it with

\eqno⟨math mode material⟩$$

for an equation number placed on the right, or

\leqno⟨math mode material⟩$$

for an equation number placed on the left.

24.6.1 Ordinary equation numbers

Above it was described how TEX calculates a displacement from the display
formula and the equation number, if this is to be put on the same line as the
formula.

If the equation number was a \leqno number, TEX places a box containing

• the equation number,

232 第 24 章 Display Math

• a kern with the size of the displacement calculated, and

• the formula.

This box is shifted right by \displayindent.
If the equation number was an \eqno number, TEX places a box containing

• the formula,

• a kern with the size of the displacement calculated, and

• the equation number.

This box is shifted right by \displayindent plus the displacement calculated.

24.6.2 The equation number on a separate line

Since displayed formulas may become rather big, TEX can decide (as was
described above) that any equation number should be placed on a line of its own.
A left-placed equation number is then to be placed above the display, in a box
that is shifted right by \displayindent; a right-placed equation number will be
placed below the display, in a box that is shifted to the right by \displayindent
plus \displaywidth minus the width of the equation number box.

In both cases a penalty of 10 000 is placed between the equation number
box and the formula.

TEX does not put extra glue above a left-placed equation number or below a
right-placed equation number; TEX here relies on the baselineskip mechanism.

24.7 Non-centred displays

As a default, TEX will center displays. In order to get non-centred displays
some macro trickery is needed.

One approach would be to write a macro \DisplayEquation that would ba-
sically look like

\def\DisplayEquation#1{%
\par \vskip\abovedisplayskip
\hbox{\kern\parindent$\displaystyle#1$}
\vskip\belowdisplayskip \noindent}

but it would be nicer if one could just write
$$... \eqno ... $$

and having this come out as a leftaligning display.
Using the \everydisplay token list, the above idea can be realized. The

basic idea is to write

24.7 Non-centred displays 233

\everydisplay{\IndentedDisplay}
\def\IndentedDisplay#1$${ ...

so that the macro \IndentedDisplay will receive the formula, including any
equation number. The first step is now to extract an equation number if it is
present. This makes creative use of delimited macro parameters.

\def\ExtractEqNo#1\eqno#2\eqno#3\relax
{\def\Equation{#1}\def\EqNo{#2}}

\def\IndentedDisplay#1$${%
\ExtractEqNo#1\eqno\eqno\relax

Next the equation should be set in the available space \displaywidth:
\hbox to \displaywidth

{\kern\parindent
$\displaystyle\Equation$\hfil\EqNo}$$

}

Note that the macro ends in the closing $$ to balance the opening dollars that
caused insertion of the \everydisplay tokens. This also means that the box con-
taining the displayed material will automatically be surrounded by \abovedisplayskip
and \belowdisplayskip glue. There is no need to use \displayindent anywhere
in this macro, because TEX itself will shift the display appropriately.

第 25 章 Alignment

TEX provides a general alignment mechanism for making tables.

\halign Horizontal alignment.

\valign Vertical alignment.

\omit Omit the template for one alignment entry.

\span Join two adjacent alignment entries.

\multispan Macro to join a number of adjacent alignment entries.

\tabskip Amount of glue in between columns (rows) of an \halign (\valign).

\noalign Specify vertical (horizontal) material to be placed in between rows
(columns) of an \halign (\valign).

\cr Terminate an alignment line.

\crcr Terminate an alignment line if it has not already been terminated
by \cr.

\everycr Token list inserted after every \cr or non-redundant \crcr.

\centering Glue register in plain TEX for centring \eqalign and \eqalignno.
Value: 0pt plus 1000pt minus 1000pt

\hideskip Glue register in plain TEX to make alignment entries invisible.
Value: -1000pt plus 1fill

\hidewidth Macro to make preceding or following entry invisible.

25.1 Introduction

TEX has a sophisticated alignment mechanism, based on templates, with
one template entry per column or row. The templates may contain any com-
mon elements of the table entries, and in general they contain instructions for
typesetting the entries. TEX first calculates widths (for \halign) or heights (for

234

25.2 Horizontal and vertical alignment 235

\valign) of all entries; then it typesets the whole alignment using in each col-
umn (row) the maximum width (height) of entries in that column (row).

25.2 Horizontal and vertical alignment
The two alignment commands in TEX are

\halign⟨box specification⟩{⟨alignment material⟩}

for horizontal alignment of columns, and

\valign⟨box specification⟩{⟨alignment material⟩}

for vertical alignment of rows. \halign is a ⟨vertical command⟩, and \valign is
a ⟨horizontal command⟩.

The braces induce a new level of grouping; they can be implicit.
The discussion below will mostly focus on horizontal alignments, but, re-

placing ‘column’ by ‘row’ and vice versa, it applies to vertical alignments too.

25.2.1 Horizontal alignments: \halign

A horizontal alignment yields a list of horizontal boxes, the rows, which are
placed on the surrounding vertical list. The page builder is exercised after the
alignment rows have been added to the vertical list. The value of \prevdepth
that holds before the alignment is used for the baselineskip of the first row, and
after the alignment \prevdepth is set to a value based on the last row.

Each entry is processed in a group of its own, in restricted horizontal mode.
A special type of horizontal alignment exists: the display alignment, spec-

ified as

$$⟨assignments⟩\halign⟨box specification⟩{...}⟨assignments⟩$$

Such an alignment is shifted by \displayindent (see Chapter 24) and sur-
rounded by
\abovedisplayskip and \belowdisplayskip glue.

25.2.2 Vertical alignments: \valign

A vertical alignment can be considered as a ‘rotated’ horizontal alignments:
they are placed on the surrounding horizontal lists, and yield a row of columns.
The \spacefactor value is treated the same way as the \prevdepth for hori-
zontal alignments: the value current before the alignment is used for the first
column, and the value reached after the last column is used after the alignment.
In between columns the \spacefactor value is 1000.

236 第 25 章 Alignment

Each entry is in a group of its own, and it is processed in internal vertical
mode.

25.2.3 Material between the lines: \noalign

Material that has to be contained in the alignment, but should not be
treated as an entry or series of entries, can be given by

\noalign⟨filler⟩{⟨vertical mode material⟩}

for horizontal alignments, and

\noalign⟨filler⟩{⟨horizontal mode material⟩}

for vertical alignments.
Examples are
\noalign{\hrule}

for drawing a horizontal rule between two lines of an \halign, and
\noalign{\penalty100}

for discouraging a page break (or line break) in between two rows (columns) of
an \halign (\valign).

25.2.4 Size of the alignment

The ⟨box specification⟩ can be used to give the alignment a predetermined
size: for instance

\halign to \hsize{ ... }

Glue contained in the entries of the alignment has no role in this; any stretch
or shrink required is taken from the \tabskip glue. This is explained below.

25.3 The preamble
Each line in an alignment is terminated by \cr; the first line is called the

template line. It is of the form

u1#v1&...&un#vn\cr

where each ui, vi is a (possibly empty) arbitrary sequence of tokens, and the
template entries are separated by the alignment tab character (& in plain TEX),
that is, any character of category 4.

A ui#vi sequence is the template that will be used for the i th column: what-
ever sequence αi the user specifies as the entry for that column will be inserted
at the parameter character. The sequence uiαivi is then processed to obtain the
actual entry for the i th column on the current line. See below for more details.

25.3 The preamble 237

The length n of the template line need not be equal to the actual number of
columns in the alignment: the template is used only for as many items as are
specified on a line. Consider as an example

\halign{a#&b#&c#\cr 1&2\cr 1\cr}

which has a three-item template, but the rows have only one or two items. The
output of this is

a1b2
a1

25.3.1 Infinite preambles

For the case where the number of columns is not known in advance, for
instance if the alignment is to be used in a macro where the user will specify
the columns, it is possible to specify that a trailing piece of the preamble can
be repeated arbitrarily many times. By preceding it with &, an entry can be
marked as the start of this repeatable part of the preamble. See the example of
\matrix below.

When the whole preamble is to be repeated, there will be an alignment tab
character at the start of the first entry:

\halign{& ... & ... \cr ... }

If a starting portion of the preamble is to be exempted from repetition, a double
alignment tab will occur:

\halign{ ... & ... & ... && ... & ... \cr ... }

The repeatable part need not be used an integral number of times. The
alignment rows can end at any time; the rest of the preamble is then not used.

25.3.2 Brace counting in preambles

Alignments may appear inside alignments, so TEX uses the following rule
to determine to which alignment an & or \cr control sequence belongs:

All tab characters and \cr tokens of an alignment should be on the
same level of grouping.

From this it follows that tab characters and \cr tokens can appear inside an
entry if they are nested in braces. This makes it possible to have nested align-
ments.

238 第 25 章 Alignment

25.3.3 Expansion in the preamble

All tokens in the preamble – apart from the tab characters – are stored
for insertion in the entries of the alignment, but a token preceded by \span is
expanded while the preamble is scanned. See below for the function of \span in
the rest of the alignment.

25.3.4 \tabskip

Entries in an alignment are set to take the width of the largest element
in their column. Glue for separating columns can be specified by assigning to
\tabskip. TEX inserts this glue in between each pair of columns, and before the
first and after the last column.

The value of \tabskip that holds outside the alignment is used before the
first column, and after all subsequent columns, unless the preamble contains
assignments to \tabskip. Any assignment to \tabskip is executed while TEX
is scanning the preamble; the value that holds when a tab character is reached
will be used at that place in each row, and after all subsequent columns, un-
less further assignments occur. The value of \tabskip that holds when \cr is
reached is used after the last column.

Assignments to \tabskip in the preamble are local to the alignment, but
not to the entry where they are given. These assignments are ordinary glue
assignments: they remove any optional trailing space.

As an example, in the following table there is no tabskip glue before the first
and after the last column; in between all columns there is stretchable tabskip.

\tabskip=0pt \halign to \hsize{
\vrule#\tabskip=0pt plus 1fil\strut&
\hfil#\hfil& \vrule#& \hfil#\hfil& \vrule#& \hfil#\hfil&
\tabskip=0pt\vrule#\cr

\noalign{\hrule}
&\multispan5\hfil Just a table\hfil&\cr

\noalign{\hrule}
&one&&two&&three&\cr &a&&b&&c&\cr

\noalign{\hrule}
}

The result of this is
Just a table

one two three
a b c

All of the vertical rules of the table are in a separate column. This is the only

25.4 The alignment 239

way to get the space around the items to stretch.

25.4 The alignment

After the template line any number of lines terminated by \cr can follow.
TEX reads all of these lines, processing the entries in order to find the maximal
width (height) in each column (row). Because all entries are kept in memory,
long tables can overflow TEX’s main memory. For such tables it is better to
write a special-purpose macro.

25.4.1 Reading an entry

Entries in an alignment are composed of the constant u and v parts of the
template, and the variable α part. Basically TEX forms the sequence of tokens
uαv and processes this. However, there are two special cases where TEX has to
expand before it forms this sequence.

Above, the \noalign command was described. Since this requires a differ-
ent treatment from other alignment entries, TEX expands, after it has read a
\cr, the first token of the first α string of the next line to see whether that is
or expands to \noalign. Similarly, for all entries in a line the first token is ex-
panded to see whether it is or expands to \omit. This control sequence will be
described below.

Entries starting with an \if... conditional, or a macro expanding to one,
may be misinterpreted owing to this premature expansion. For example,

\halign{$#$\cr \ifmmode a\else b\fi\cr}

will give

b

because the conditional is evaluated before math mode has been set up. The
solution is, as in many other cases, to insert a \relax control sequence to stop
the expansion. Here the \relax has to be inserted at the start of the alignment
entry.

If neither \noalign nor \omit (see below) is found, TEX will process an input
stream composed of the u part, the α tokens (which are delimited by either & or
\span, see below), and the v part.

Entries are delimited by &, \span, or \cr, but only if such a token occurs on
the same level of grouping. This makes it possible to have an alignment as an
entry of another alignment.

240 第 25 章 Alignment

25.4.2 Alternate specifications: \omit

The template line will rarely be sufficient to describe all lines of the align-
ment. For lines where items should be set differently the command \omit exists:
if the first token in an entry is (or expands to) \omit the trivial template # is
used instead of what the template line specifies.

例子：The following alignment uses the same template for all columns,
but in the second column an \omit command is given.

\tabskip=1em
\halign{&$<#>$\cr a&\omit (b)&c \cr}

The output of this is

< a > (b) < c >

25.4.3 Spanning across multiple columns: \span

Sometimes it is desirable to have material spanning several columns. The
most obvious example is that of a heading above a table. For this TEX provides
the \span command.

Entries are delimited either by &, by \cr, or by \span. In the last case TEX
will omit the tabskip glue that would normally follow the entry thus delimited,
and it will typeset the material just read plus the following entry in the joint
space available.

As an example,
\tabskip=1em
\halign{&#\cr a&b&c&d\cr a&\hrulefill\span\hrulefill&d\cr}

gives
a b c d
a d

Note that there is no tabskip glue in between the two spanned columns, but
there is tabskip glue before the first column and after the last.

Using the \omit command this same alignment could have been generated
as

\halign{&#\cr a&b&c&d\cr a&\hrulefill\span\omit&d\cr}

The \span\omit combination is used in the plain TEX macro \multispan:
for instance

\multispan4 gives \omit\span\omit\span\omit\span\omit

which spans across three tabs, and removes the templates of four entries. Re-
peating the above example once again:

25.4 The alignment 241

\halign{&#\cr a&b&c&d\cr a&\multispan2\hrulefill&d\cr}

The argument of \multispan is a single token, not a number, so in order to span
more than 9 columns the argument should be enclosed in braces, for instance
\multispan{12}. Furthermore, a space after a single-digit argument will wind
up in the output.

For a ‘low budget’ solution to spanning columns plain TEX has the macro
\hidewidth, defined by

\newskip\hideskip \hideskip=-1000pt plus 1fill
\def\hidewidth{\hskip\hideskip}

Putting \hidewidth at the beginning or end of an alignment entry will make
its width zero, with the material in the entry sticking out to the left or right
respectively.

25.4.4 Rules in alignments

Horizontal rules inside a horizontal alignment will mostly be across the
width of the alignment. The easiest way to attain this is to use

\noalign{\hrule}

lines inside the alignment. If the alignment is contained in a vertical box, lines
above and below the alignment can be specified with

\vbox{\hrule \halign{...} \hrule}

The most general way to get horizontal lines in an alignment is to use

\multispann\hrulefill

which can be used to underline arbitrary adjacent columns.
Vertical rules in alignments take some more care. Since a horizontal align-

ment breaks up into horizontal boxes that will be placed on a vertical list, TEX
will insert baselineskip glue in between the rows of the alignment. If vertical
rules in adjacent rows are to abut, it is necessary to prevent baselineskip glue,
for instance by the \offinterlineskip macro.

In order to ensure that rows will still be properly spaced it is then necessary
to place a strut somewhere in the preamble. A strut is an invisible object with a
certain height and depth. Putting that in the preamble guarantees that every
line will have at least that height and depth. In the plain format \strut is
defined statically as

\vrule height8.5pt depth3.5pt width0pt

so this must be changed when other fonts or sizes are used.
It is a good idea to use a whole column for a vertical rule, that is, to write
\vrule#&

242 第 25 章 Alignment

in the preamble and to leave the corresponding entry in the alignment empty.
Omitting the vertical rule can then be done by specifying \omit, and the size of
the rule can be specified explicitly by putting, for instance, height 15pt in the
entry instead of leaving it empty. Of course, tabskip glue will now be specified
to the left and right of the rule, so some extra tabskip assignments may be
needed in the preamble.

25.4.5 End of a line: \cr and \crcr

All lines in an alignment are terminated by the \cr control sequence, in-
cluding the last line. TEX is not able to infer from a closing brace in the α part
that the alignment has ended, because an unmatched closing brace is perfectly
valid in an alignment entry; it may match an opening brace in the u part of the
corresponding preamble entry.

TEX has a primitive command \crcr that is equivalent to \cr, but it has no
effect if it immediately follows a \cr. Consider as an example the definition in
plain TEX of \cases:

\def\cases#1{%
\left\{\,\vcenter{\normalbaselines\m@th

\ialign{ $##\hfil$& \quad##\hfil \crcr #1\crcr}}%
\right.}

Because of the \crcr after the user argument #1, the following two applications
of this macro

\cases{1&2\cr 3&4} and \cases{1&2\cr 3&4\cr}

both work. In the first case the \crcr in the macro definition ends the last line;
in the second case the user’s \cr ends the line, and the \crcr is redundant.

After \cr and after a non-redundant \crcr the ⟨token parameter⟩ \everycr
is inserted. This includes the \cr terminating the template line.

25.5 Example: math alignments

The plain format has several alignment macros that function in math mode.
One example is \matrix, defined by

\def\matrix#1{\null\,\vcenter{\normalbaselines\m@th
\ialign{\hfil$##$\hfil && \quad\hfil$##$\hfil\crcr

\mathstrut\crcr
\noalign{\kern-\baselineskip}

#1\crcr
\mathstrut\crcr

\noalign{\kern-\baselineskip}}}\,}

25.5 Example: math alignments 243

This uses a repeating (starting with &&) second preamble entry; each entry is
centred by an \hfil before and after it, and there is a \quad of space in between
columns. Tabskip glue was not used for this, because there should not be any
glue preceding or following the matrix.

The combination of a \mathstrut and \kern-\baselineskip above and be-
low the matrix increases the vertical size such that two matrices with the same
number of rows will have the same height and depth, which would not other-
wise be the case if one of them had subscripts in the last row, but the other not.
The \mathstrut causes interline glue to be inserted and, because it has a size
equal to \baselineskip, the negative kern will effectively leave only the inter-
line glue, thereby buffering any differences in the first and last line. Only to a
certain point, of course: objects bigger than the opening brace will still result
in a different height or depth of the matrix.

Another, more complicated, example of an alignment for math mode is \eq-
alignno.

\def\eqalignno#1{\begin{disp}l@y \tabskip\centering
\halign to\displaywidth{

\hfil$\@lign\displaystyle{##}$% -- first column
\tabskip\z@skip

&$\@lign\displaystyle{{}##}$\hfil% -- second column
\tabskip\centering

&\llap{$\@lign##$}% -- third column
\tabskip\z@skip\crcr % end of the preamble
#1\crcr}}

Firstly, the tabskip is set to zero after the equation number, so this number is
set flush with the right margin. Since it is placed by \llap, its effective width is
zero. Secondly, the tabskip between the first and second columns is also zero,
and the tabskip before the first column and after the second is \centering,
which is 0pt plus 1000pt minus 1000pt, so the first column and second are
jointly centred in the \hsize. Note that, because of the minus 1000pt, these
two columns will happily go outside the left and right margins, overwriting any
equation numbers.

第 26 章 Page Shape

This chapter treats some of the parameters that determine the size of the
page and how it appears on paper.

\topskip Minimum distance between the top of the page box and the baseline
of the first box on the page. Plain TEX default: 10pt

\hoffset \voffset Distance by which the page is shifted right/down with
respect to the reference point.

\vsize Height of the page box. Plain TEX default: 8.9in

\maxdepth Maximum depth of the page box. Plain TEX default: 4pt

\splitmaxdepth Maximum depth of a box split off by a \vsplit operation.
Plain TEX default: \maxdimen

26.1 The reference point for global positioning
The page positioning on the paper is governed by a TEX convention, to

which output device drivers must adhere, that the top left point of the page
is one inch from the page edges. Unfortunately this may lead to lots of trouble,
for instance if a printer (or the page description language it uses) takes, say,
the lower left corner as the reference point, and is factory set to US paper sizes,
but is used with European standard A4 paper.

The page is shifted on the paper if one assigns non-zero values to \hoffset
or \voffset: positive values shift to the right and down respectively.

26.2 \topskip

The \topskip ensures to a certain point that the first baseline of a page
will be at the same location from page to page, even if font sizes are switched
between pages or if the first line has no ascenders.

244

26.3 Page height and depth 245

Before the first box on each page some glue is inserted. This glue has the
same stretch and shrink as \topskip, but the natural size is the natural size of
\topskip minus the height of the first box, or zero if this would be negative.

Plain TEX sets \topskip to 10pt. Thus the top lines of pages will have their
baselines at the same place if the top portion of the characters is ten point or
less. For the Computer Modern fonts this condition is satisfied if the font size
is less than (about) 13 points; for larger fonts the baseline of the top line will
drop.

The height of the page box for a page containing only text (and assuming a
zero \parskip) will be the \topskip plus a number of times the \baselineskip.
Thus one can define a macro to compute the \vsize from the number of lines
on a page:

\def\HeightInLines#1{\count@=#1\relax
\advance\count@ by -1\relax
\vsize=\baselineskip
\multiply\vsize by \count@
\advance\vsize by \topskip}

Calculating the \vsize this way will prevent underfull boxes for text-only pages.
In cases where the page does not start with a line of text (for instance a

rule), the topskip may give unwanted effects. To prevent these, start the page
with

\hbox{}\kern-\topskip

followed by what you wanted on top.
Analogous to the \topskip, there is a \splittopskip for pages generated

by a \vsplit operation; see the next chapter.

26.3 Page height and depth
TEX tries to build pages as a \vbox of height \vsize; see also \pagegoal in

the next chapter.
If the last item on a page has an excessive depth, that page would be notice-

ably longer than other pages. To prevent this phenomenon TEX uses \maxdepth
as the maximum depth of the page box. If adding an item to the page would
make the depth exceed this quantity, then the reference point of the page is
moved down to make the depth exactly \maxdepth.

The ‘raggedbottom’ effect is obtained in plain TEX by giving the \topskip
some finite stretchability: 10pt plus 60pt. Thus the natural height of box 255
can vary when it reaches the output routine. Pages are then shipped out (more
or less) as

246 第 26 章 Page Shape

\dimen0=\dp255 \unvbox255
\ifraggedbottom \kern-\dimen0 \vfil \fi

The \vfil causes the topskip to be set at natural width, so the effect is one of a
fixed top line and a variable bottom line of the page.

Before \box255 is unboxed in the plain TEX output routine, \boxmaxdepth
is set to \maxdepth so that this box will made under the same assumptions that
the page builder used when putting together \box255.

The depth of box split off by a \vsplit operation is controlled by the \splitmaxdepth
parameter.

第 27 章 分页

本章讨论 ‘页面构建器’：TEX 确定在何处将主竖直列分为多个页面的模块。页
面构建器在输出例程之前运行，它将所得结果放入 \box255以送给输出例程。

\vsplit 分割出一个盒子的顶端部分。它可与分页作对比。

\splittopskip 在 \vsplit分割出的盒子中，第一个项目到盒子顶部的最小距离。
Plain TEX默认为 10pt。

\pagegoal 页面盒子的目标高度。它刚开始等于 \vsize，并且根据插入项的高度
逐步减少。

\pagetotal 当前页面积累的自然高度。

\pagedepth 当前页面的深度。

\pagestretch 当前页面积累的零阶可伸长量。

\pagefilstretch 当前页面积累的一阶可伸长量。

\pagefillstretch 当前页面积累的二阶可伸长量。

\pagefilllstretch 当前页面积累的三阶可伸长量。

\pageshrink 当前页面积累的可收缩量。

\outputpenalty 在当前分页点的惩罚值，若不在惩罚处分页，它等于 10 000。

\interlinepenalty 在段落内部两行间分页的惩罚值。Plain TEX默认为 0。

\clubpenalty 在段落首行之后分页的额外惩罚值。Plain TEX默认为 150。

\widowpenalty 在段落尾行之前分页的额外惩罚值。Plain TEX默认为 150。

\displaywidowpenalty 在陈列公式上面的尾行之前分页的额外惩罚值。Plain
TEX默认为 50。

\brokenpenalty 在连字行之后分页的额外惩罚值。Plain TEX默认为 100。

\penalty 在当前列表上添加一个惩罚项。

\lastpenalty 如果当前列表的上一项为惩罚项，它表示该惩罚项的值。

\unpenalty 如果当前列表的上一项为惩罚项，删除该项目。

247

248 第 27 章 分页

27.1 当前页面与备选内容

TEX的主竖直列被分为两部分：当前页面和备选内容列。任何添加到主竖直列
的素材被追加到备选内容中；将素材从备选内容移动到当前页面的操作称为执行页
面构建器.
每次有内容移动到当前页面时，TEX 计算在该处分页的代价。如果 TEX 判

断该处已经越过最佳分页点，当前页面在最佳分页点之前的所有内容就被放入
\box255，而剩下的内容被放回备选内容顶部。如果页面在惩罚项处分页，该惩罚
的值就被记录在 \outputpenalty中，而且值为 10 000的惩罚项被放在备选内容的
顶部；否则，\outputpenalty就被设为 10 000。
如果当前页面是空的，从备选内容移动过来的可弃项目将被丢弃。此机制会让

分页点之后以及第一页顶部的粘连消失。在第一个非可弃项目移动到当前页面时，
\topskip粘连将会被插入；详见上一章。
要看到页面构建器的工作过程，可以将 \tracingpages 设定为某个正值（见

第 34章）。

27.2 激活页面构建器

页面构建器将在下列位置起作用：

• 在段落前后：在 \everypar记号列被插入后，以及段落被加入到竖直列后。见
本章结尾处的例子。

• 在陈列公式前后：在 \everydisplay 记号列被插入后，以及陈列公式被加入
到竖直列后。

• 在竖直模式的 \par命令、盒子、插入项和显式惩罚项之后。

• 在输出例程结束后。

页面构建器在这些位置将备选内容移动到当前页面。注意页面构建器运行时 TEX
无需处于竖直模式中。在水平模式，激活页面构建器是为了将前面的竖直粘连（比
如 \parskip和 \abovedisplayskip）移动到当前页面。

\end命令 –它只能用于外部竖直模式中 –在主竖直列为空且 \deadcycles = 0

时将终止 TEX任务。否则，下列这串记号

\hbox{}\vfill\penalty−230

将被插入进来，这促使输出例程开始运行【译注：然后 \end命令将被重新读入】。

27.3 页面长度的记录

如上一章所述，到达输出例程的页面盒子的高度和深度由 \vsize、\topskip
和 \maxdepth确定。在第一个盒子出现当前页面时，TEX放入 \topskip粘连；而

27.4 分页点 249

\vsize和 \maxdepth在第一个盒子或插入项出现在页面时读取。此后对这些参数
的修改将不会被注意到，直到下一页或者，更严格地说，直到输出例程调用完毕
之后。

在第一个盒子、标线或插入项出现在当前页面之后，\vsize 被记录在
\pagegoal中，并且在 \output调用完毕之前不再被查看。改变 \pagegoal对当前
页面不会有任何影响。当页面为空时，\pagegoal等于 \maxdimen，而 \pagetotal
等于零。

积累的尺寸和可伸缩量记录在 \pagetotal、\pagedepth、\pagestretch、
\pagefilstretch、\pagefillstretch、\pagefilllstretch 以及 \pageshrink
这些参数中。它们由页面构建器设定。在添加每个粘连到页面时，可伸长量和
可收缩量参数都会被更新。如果最后一个项目是紧排或者粘连，\pagedepth 参数
等于零。

这些参数都是 ⟨special dimen⟩；对它们中任何一个的赋值都是 ⟨intimate
assignment⟩，而且自动就是全局的。

27.4 分页点

27.4.1 可能的分页点

分页点可以出现在与断行点相同类型的位置。竖直模式的断点如下：

• 在粘连处，只要它前面是非可弃项目；

• 在紧排处，只要它后面是一个粘连；

• 在惩罚处。

在添加段落行到竖直列时，TEX会插入行间粘连和各种行间惩罚，这使得页面上通
常有足够的分页点。

27.4.2 分页点的惩罚

如果 TEX 决定在惩罚项处分页，这个惩罚项，在多数情况下，是之前自动插
入到段落各行间的。

如果列表（未必得是竖直列）的最后一项是个惩罚项，它的值会在记录在
\lastpenalty 参数中。如果这个项目不是一个惩罚项，这个参数的值为零。列表
的最后一个惩罚项可以用命令 \unpenalty删除。见第 5.9.6节的例子。
下面列出了各种竖直模式的惩罚：

\interlinepenalty 在段落内部两行间分页的惩罚值。在 plain TEX中它默认为
零，因此两行间不会添加惩罚项。这样 TEX可以在 \baselineskip粘连处寻
找有效分页点。

250 第 27 章 分页

\clubpenalty 在段落首行之后分页的额外惩罚值。Plain TEX默认为 150。这个
数值将被加到 \interlinepenalty上，依照所得结果插入一个惩罚项到包含
段落第一行的 \hbox之后，以替代 \interlinepenalty。后面几个惩罚的情
形类似。

\widowpenalty 在段落尾行之前分页的额外惩罚值。Plain TEX默认为 150。

\displaywidowpenalty 在陈列公式上面的尾行之前分页的额外惩罚值。在 plain
TEX中默认为 50。

\brokenpenalty 在连字行之后分页的额外惩罚值。在 plain TEX中默认为 100。

如果惩罚值等于零，惩罚项将不会被插入。
用户也可以插入惩罚项。比如 plain格式有用于强制、阻止或鼓励分页的宏：
\def\break{\penalty-10000 } % force break
\def\nobreak{\penalty10000 } % prohibit break
\def\goodbreak{\par\penalty-500 } % encourage page break

另外，\vadjust{\penalty ... } 是另一种在竖直列中添加惩罚项的方法。它可
以用于阻碍或鼓励在段落某行之后分页。

27.4.3 分页点的计算

每当有项目移动到当前页面，TEX 计算在

未满的页面
b = 10 000

可行的断点
b < 10 000

过满的页面
b =∞
.
.
.

该位置分页时的惩罚值 p 和丑度 b。从惩罚值
和丑度再计算出分页的代价 c。
代价最小的位置被记录下来，而当代价为

无穷时，即页面过满或惩罚值为 p ≤ −10 000

时，当前页面就在（上回记录的）代价最小位
置分开。分出来的部分就被放入 \box255，然
后输出例程记号列被插入。第 255号盒子的高
度总是被设为 \vsize，不管它包含多少素材。
丑度计算基于要将页面放入高度为 \vsize

深度不超过 \maxdepth 的盒子所需的伸长或
收缩量。计算方法和断行时一样（见第 8 章）。
丑度满足 0 ≤ b ≤ 10 000，除了在页面过满
时 b =∞。
有些惩罚是由 TEX 隐式插入的，比如 \interlinepenalty就是在段落任何两

行间自动插入的。其他惩罚可以由用户或用户宏隐式插入。惩罚值 p ≥ 10 000将阻
止分页；而惩罚值 p ≤ −10 000（在外部竖直模式中）将强制分页，并立即激活输
出例程。
分页代价依照下面步骤计算：

1. 若惩罚值小到导致强制分页并立即激活输出例程，而且页面不是过满的，即

27.5 分割竖直列 251

b <∞ 且 p ≤ −10 000

则代价等于惩罚值：c = p。

2. 若惩罚值不会导致强制或禁止分页，而且页面不是过满的，即

b <∞ 且 |p| < 10 000

则代价等于 c = b + p。

3. 若页面非常糟糕，即

b = 10 000 且 |p| < 10 000

则代价等于 c = 10 000.

4. 若页面过满，即

b =∞ 且 p < 10 000

则代价为无穷大：c = ∞. 此时 TEX 判定最佳分页点应该出现在前面，并且调
用输出例程。超过 10 000的 \insertpenalties值（见第 29章）同样给出无
穷大的代价。

惩罚值 p ≤ −10 000 将激活输出例程这个事实在 LATEX 输出例程中多次用到：
差值码 |p|− 10 000用于表示调用输出例程的原因【译注：见 source2e第 317页】；
另外可以见下一章的第二个例子。

27.5 分割竖直列

用户可以通过 \vsplit命令实现分页操作。

例子：

\setbox1 = \vsplit2 to \dimen3

将 2 号盒子顶部 \dimen3 大小的部分赋予 1 号盒子。这部分素材实际上
是从 2 号盒子移除出来的。可以将它与从当前页面分割出 \vsize 大小
的一块内容作对比。

分割命令

\vsplit⟨8-bit number⟩to⟨dimen⟩

提取出的结果是一个满足下列属性的盒子：

• 高度等于指定的 ⟨dimen⟩；TEX将遍历原始的盒子寄存器（它必须容纳一个竖
直盒子）以找到最佳断点。最后可能得到一个未满盒子。

• 深度不超过 \splitmaxdepth；与它类似的是页面盒子的 \maxdepth，而不是
对任何盒子都适用的 \boxmaxdepth。

• 第一个和最后一个标记放在 \splitfirstmark和 \splitbotmark寄存器中。

而经过 \vsplit操作后盒子的剩余部分是这样的：

252 第 27 章 分页

• 顶部的所有可弃项都被删除；

• 大小为 \splittopskip的粘连被插入到顶部；如果所分割的是第 255号盒子，
它的顶部已经有了 \topskip粘连；

• 其深度不得超过 \splitmaxdepth。

原始盒子的底部始终是 \vsplit操作的合适断点。如果选择它为断点，剩余的
盒子寄存器就是空的。提取出的盒子也可以是空的；它是空的当且仅当原始盒子是
空的或者并非竖直盒子。
通常，\vsplit被用于从 \box255分割出一部分。通过设定 \splitmaxdepth

等于 \boxmaxdepth，得到的结果就和 TEX 的页面构建器的一样。在修剪 \box255
顶部之后，标记寄存器 \firstmark和 \botmark就包含 \box255剩余部分的第一
个和最后一个标记。见下一章关于标记的更多信息。

27.6 分页的例子

27.6.1 填满页面

假设某个竖直盒子太大以致在页面剩余部分放不下。要将页面填满并将该盒子
放到下一页，使用

\vfil\vbox{ ... }

是错误的。这样 TEX只会在 \vfil粘连开始处分页，而分页后 \vfil将会被丢弃：
结果将得到一个未满页面，或者至少是一个有伸长太多的糟糕页面。另一方面，

\vfil\penalty0 % or any other value
\vbox{ ... }

就是正确的做法：TEX将在惩罚处分页，而该页面将被填满。

27.6.2 确定断点

在接下来的例子中我们使用与分页机制相同的 \vsplit操作。
假设已经给出下面的宏和参数设定：
\offinterlineskip \showboxdepth=1
\def\High{\hbox{\vrule height5pt}}
\def\HighAndDeep{\hbox{\vrule height2.5pt depth2.5pt}}

首先我们考虑伸长竖直列以到达断点的例子。
\splitmaxdepth=4pt
\setbox1=\vbox{\High \vfil \HighAndDeep}
\setbox2=\vsplit1 to 9pt

给出
> \box2=
\vbox(9.0+2.5)x0.4, glue set 1.5fil

27.6 分页的例子 253

.\hbox(5.0+0.0)x0.4 []

.\glue 0.0 plus 1.0fil

.\glue(\lineskip) 0.0

.\hbox(2.5+2.5)x0.4 []

这两个盒子合起来的高度为 7.5pt，因此粘连需要伸长 1.5pt。
其次，我们减少结果列表所允许的深度值。
\splitmaxdepth=2pt
\setbox1=\vbox{\High \vfil \HighAndDeep}
\setbox2=\vsplit1 to 9pt

给出
> \box2=
\vbox(9.0+2.0)x0.4, glue set 1.0fil
.\hbox(5.0+0.0)x0.4 []
.\glue 0.0 plus 1.0fil
.\glue(\lineskip) 0.0
.\hbox(2.5+2.5)x0.4 []

此时基准点被下移 0.5pt，而伸长量也相应减少，但是结果列表的尺寸不会比所指
定的大。

作为这个事实的例子，再考虑下面的例子
\splitmaxdepth=3pt
\setbox1=\vbox{\High \kern1.5pt \HighAndDeep}
\setbox2=\vsplit1 to 9pt

这将会给出一个恰好 9pt高 2.5pt深的盒子：
> \box2=
\vbox(9.0+2.5)x0.4
.\hbox(5.0+0.0)x0.4 []
.\kern 1.5
.\glue(\lineskip) 0.0
.\hbox(2.5+2.5)x0.4 []

若改为 \splitmaxdepth=2pt，将不会让高度增加 0.5pt；反而由于断点提前而得
到一个未满盒子：

> \box2=
\vbox(9.0+0.0)x0.4
.\hbox(5.0+0.0)x0.4 []

有时候分割的时机也是重要的。TEX首先寻找能得到所需高度的断点，然后看
依照 \maxdepth或 \splitmaxdepth调节深度是否会超出规定高度。
考虑一个与此时机有关的例子：这段代码
\splitmaxdepth=4pt
\setbox1=\vbox{\High \vfil \HighAndDeep}
\setbox2=\vsplit1 to 7pt

所得结果并非一个 7pt高 3pt深的盒子，而是一个未满盒子：

254 第 27 章 分页

> \box2=
\vbox(7.0+0.0)x0.4
.\hbox(5.0+0.0)x0.4 []

27.6.3 段落后的页面构建

在段落结束后，页面构建器将素材移动到当前页面，但它并不决定断点是否已
经找到。

例子：

\output{\interrupt \plainoutput}% show when you're active
\def\nl{\hfil\break}\vsize=22pt % make pages of two lines
a\nl b\nl c\par \showlists % make a 3-line paragraph

将报告

current page:
[...]
total height 34.0
goal height 22.0
prevdepth 0.0, prevgraf 3 lines

纵使已经收集到过多的素材，\output 还是仅会在下个段落开始时才执
行：当 \output 被插入到 \everypar 后，键入 d 将给出

! Undefined control sequence.
<output> {\interrupt

\plainoutput }
<to be read again>

d

第 28 章 Output Routines

The final stages of page processing are performed by the output routine.
The page builder cuts off a certain portion of the main vertical list and hands
it to the output routine in \box255. This chapter treats the commands and pa-
rameters that pertain to the output routine, and it explains how output routines
can receive information through marks.

\output Token list with instructions for shipping out pages.

\shipout Ship a box to the dvi file.

\mark Specify a mark text.

\topmark The last mark on the previous page.

\botmark The last mark on the current page.

\firstmark The first mark on the current page.

\splitbotmark The last mark on a split-off page.

\splitfirstmark The first mark on a split-off page.

\deadcycles Counter that keeps track of how many times the output routine
has been called without a \shipout taking place.

\maxdeadcycles The maximum number of times that the output routine is
allowed to be called without a \shipout occurring.

\outputpenalty Value of the penalty at the current page break, or 10 000 if
the break was not at a penalty.

28.1 The \output token list
Common parlance has it that ‘the output routine is called’ when TEX has

found a place to break the main vertical list. Actually, \output is not a macro
but a token list that is inserted into TEX’s command stream.

Insertion of the \output token list happens inside a group that is implicitly

255

256 第 28 章 Output Routines

opened. Also, TEX enters internal vertical mode. Because of the group, non-
local assignments (to the page number, for instance) have to be prefixed with
\global. The vertical mode implies that during the workings of the output
routine spaces are mostly harmless.

The \output token list belongs to the class of the ⟨token parameter⟩s. These
behave the same as \toksnnn token lists; see Chapter 14. Assigning an output
routine can therefore take the following forms:

\output⟨equals⟩⟨general text⟩ or \output⟨equals⟩⟨filler⟩⟨token vari-
able⟩

28.2 Output and \box255

TEX’s page builder breaks the current page at the optimal point, and stores
everything above that in \box255; then, the \output tokens are inserted into
the input stream. Any remaining material on the main vertical list is pushed
back to the recent contributions. If the page is broken at a penalty, that value
is recorded in \outputpenalty, and a penalty of size 10 000 is placed on top of
the recent contributions; otherwise, \outputpenalty is set to 10 000. When the
output routine is finished, \box255 is supposed to be empty. If it is not, TEX
gives an error message.

Usually, the output routine will take the pagebox, append a headline and/
or footline, maybe merge in some insertions such as footnotes, and ship the page
to the dvi file:

\output={\setbox255=\vbox
{\someheadline
\vbox to \vsize{\unvbox255 \unvbox\footins}
\somefootline}

\shipout\box255}

When box 255 reaches the output routine, its height has been set to \vsize.
However, the material in it can have considerably smaller height. Thus, the
above output routine may lead to underfull boxes. This can be remedied with a
\vfil.

The output routine is under no obligation to do anything useful with \box255;
it can empty it, or unbox it to let TEX have another go at finding a page break.
The number of times that the output routing postpones the \shipout is recorded
in \deadcycles: this parameter is set to 0 by \shipout, and increased by 1 just
before every \output.

When the number of dead cycles reaches \maxdeadcycles, TEX gives an
error message, and performs the default output routine

28.3 Marks 257

\shipout\box255

instead of the routine it was about to start. The LATEX format has a much higher
value for \maxdeadcycles than plain TEX, because the output routine in LATEX
is often called for intermediate handling of floats and marginal notes.

The \shipout command can send any ⟨box⟩ to the dvi file; this need not be
box 255, or even a box containing the current page. It does not have to be called
inside the output routine, either.

If the output routine produces any material, for instance by calling
\unvbox255

this is put on top of the recent contributions.
After the output routine finishes, the page builder is activated. In par-

ticular, because the current page has been emptied, the \vsize is read again.
Changes made to this parameter inside the output routine (using \global) will
therefore take effect.

28.3 Marks

Information can be passed to the output routine through the mechanism of
marks. The user can specify a token list with

\mark{⟨mark text⟩}

which is put in a mark item on the current vertical list. The mark text is subject
to expansion as in \edef.

If the mark is given in horizontal mode it migrates to the surrounding ver-
tical lists like an insertion item (see page 79); however, if this is not the external
vertical list, the output routine will not find the mark.

Marks are the main mechanism through which the output routine can ob-
tain information about the contents of the currently broken-off page, in partic-
ular its top and bottom. TEX sets three variables:

\botmark the last mark occurring on the current page;

\firstmark the first mark occurring on the current page;

\topmark the last mark of the previous page, that is, the value of \botmark on
the previous page.

If no marks have occurred yet, all three are empty; if no marks occurred on the
current page, all three mark variables are equal to the \botmark of the previous
page.

For boxes generated by a \vsplit command (see previous chapter), the
\splitbotmark and \splitfirstmark contain the marks of the split-off part;

258 第 28 章 Output Routines

\firstmark and \botmark reflect the state of what remains in the register.

例子：Marks can be used to get a section heading into the headline
or footline of the page.

\def\section#1{ ... \mark{#1} ... }
\def\rightheadline{\hbox to \hsize

{\headlinefont \botmark\hfil\pagenumber}}
\def\leftheadline{\hbox to \hsize

{\headlinefont \pagenumber\hfil\firstmark}}

This places the title of the first section that starts on a left page in
the left headline, and the title of the last section that starts on the
right page in the right headline. Placing the headlines on the page
is the job of the output routine; see below.

It is important that no page breaks can occur in between the mark
and the box that places the title:

\def\section#1{ ...
\penalty\beforesectionpenalty
\mark{#1}
\hbox{ ... #1 ...}
\nobreak
\vskip\aftersectionskip
\noindent}

Let us consider another example with headlines: often a page looks better
if the headline is omitted on pages where a chapter starts. This can be imple-
mented as follows:

\def\endofchapter
\chapter#1{ ... \def\chtitle{#1}\mark{1}\mark{0} ... }
\def\theheadline{\expandafter\ifx\firstmark1

\else \chapheadline \fi}

Only on the page where a chapter starts will the mark be 1, and on all other
pages a headline is placed.

28.4 Assorted remarks

28.4.1 Hazards in non-trivial output routines

If the final call to the output routine does not perform a \shipout, TEX will
call the output routine endlessly, since a run will only stop if both the vertical
list is empty, and \deadcycles is zero. The output routine can set \deadcycles
to zero to prevent this.

28.4 Assorted remarks 259

28.4.2 Page numbering

The page number is not an intrinsic property of the output routine; in plain
TEX it is the value of \count0. The output routine is responsible for increasing
the page number when a shipout of a page occurs.

Apart from \count0, counter registers 1–9 are also used for page identifica-
tion: at shipout TEX writes the values of these ten counters to the dvi file (see
Chapter 33). Terminal and log file output display only the non-zero counters,
and the zero counters for which a non-zero counter with a higher number ex-
ists, that is, if \count0 = 1 and \count3 = 5 are the only non-zero counters, the
displayed list of counters is [1.0.0.5].

28.4.3 Headlines and footlines in plain TEX

Plain TEX has token lists \headline and \footline; these are used in the
macros
\makeheadline and \makefootline. The page is shipped out as (more or less)

\vbox{\makeheadline\pagebody\makefootline}

Both headline and footline are inserted inside a \line. For non-standard
headers and footers it is easier to redefine the macros \makeheadline and \makefootline
than to tinker with the token lists.

28.4.4 Example: no widow lines

Suppose that one does not want to allow widow lines, but pages have in
general no stretch or shrink, for instance because they only contain plain text.
A solution would be to increase the page length by one line if a page turns out
to be broken at a widow line.

TEX’s output routine can perform this sort of trick: if the \widowpenalty is
set to some recognizable value, the output routine can see by the \outputpenalty
if a widow line occurred. In that case, the output routine can temporarily in-
crease the \vsize, and let the page builder have another go at finding a break
point.

Here is the skeleton of such an output routine. No headers or footers are
provided for.

\newif\ifLargePage \widowpenalty=147
\newdimen\oldvsize \oldvsize=\vsize
\output={

\ifLargePage \shipout\box255
\global\LargePagefalse
\global\vsize=\oldvsize

260 第 28 章 Output Routines

\else \ifnum \outputpenalty=\widowpenalty
\global\LargePagetrue
\global\advance\vsize\baselineskip
\unvbox255 \penalty\outputpenalty

\else \shipout\box255
\fi \fi}

The test \ifLargePage is set to true by the output routine if the \outputpenalty
equals the \widowpenalty. The page box is then \unvbox ed, so that the page
builder will tackle the same material once more.

28.4.5 Example: no indentation top of page

Some output routines can be classified as abuse of the output routine mech-
anism. The output routine in this section is a good example of this.

It is imaginable that one wishes paragraphs not to indent if they start at
the top of a page. (There are plenty of objections to this layout, but occasionally
it is used.) This problem can be solved using the output routine to investigate
whether the page is still empty and, if so, to give a signal that a paragraph
should not indent.

Note that we cannot use the fact here that the page builder comes into play
after the insertion of \everypar: even if we could force the output routine to be
activated here, there is no way for it to remove the indentation box.

The solution given here lets the \everypar terminate the paragraph imme-
diately with

\par\penalty-\specialpenalty

which activates the output routine. Seeing whether the pagebox is empty (after
removing the empty line and any \parskip glue), the output routine then can
set a switch signalling whether the retry of the paragraph should indent.

There are some minor matters in the following routines, the sense of which
is left for the reader to ponder.

\mathchardef\specialpenalty=10001
\newif\ifPreventSwitch
\newbox\testbox
\topskip=10pt

\everypar{\begingroup \par
\penalty-\specialpenalty
\everypar{\endgroup}\parskip0pt
\ifPreventSwitch \noindent \else \indent \fi
\global\PreventSwitchfalse
}

\output{

28.4 Assorted remarks 261

\ifnum\outputpenalty=-\specialpenalty
\setbox\testbox\vbox{\unvbox255

{\setbox0=\lastbox}\unskip}
\ifdim\ht\testbox=0pt \global\PreventSwitchtrue
\else \topskip=0pt \unvbox\testbox \fi

\else \shipout\box255 \global\advance\pageno1 \fi}

28.4.6 More examples of output routines

A large number of examples of output routines can be found in [38] and [39].

第 29 章 Insertions

Insertions are TEX’s way of handling floating information. TEX’s page builder
calculates what insertions and how many of them will fit on the page; these in-
sertion items are then placed in insertion boxes which are to be handled by the
output routine.

\insert Start an insertion item.

\newinsert Allocate a new insertion class.

\insertpenalties Total of penalties for split insertions. Inside the output
routine, the number of held-over insertions.

\floatingpenalty Penalty added when an insertion is split.

\holdinginserts (TEX3 only) If this is positive, insertions are not placed in
their boxes at output time.

\footins Number of the footnote insertion class in plain TEX.

\topins Number of the top insertion class.

\topinsert Plain TEX macro to start a top insert.

\pageinsert Plain TEX macro to start an insert that will take up a whole
page.

\midinsert Plain TEX macro that places its argument if there is space, and
converts it into a top insert otherwise.

\endinsert Plain TEX macro to wind up an insertion item that started with
\topinsert, \midinsert, or \pageinsert.

29.1 Insertion items
Floating information, items that are not bound to a fixed place in the ver-

tical list, such as figures or footnotes, are handled by insertions. The treatment
of insertions is a strange interplay between the user, TEX’s internal workings,

262

29.2 Insertion class declaration 263

and the output routine. First the user specifies an insertion, which is a certain
amount of vertical material; then TEX’s page builder decides what insertions
should go on the current page and puts these insertions in insertion boxes; fi-
nally, the output routine has to do something with these boxes.

An insertion item looks like

\insert⟨8-bit number⟩{⟨vertical mode material⟩}

where the 8-bit number should not be 255, because \box255 is used by TEX for
passing the page to the output routine.

The braces around the vertical mode material in an insertion item can be
implicit; they imply a new level of grouping. The vertical mode material is
processed in internal vertical mode.

Values of \splittopskip, \splitmaxdepth, and \floatingpenalty are rele-
vant for split insertions (see below); the values that are current just before the
end of the group are used.

Insertion items can appear in vertical mode, horizontal mode, and math
mode. For the latter two modes they have to migrate to the surrounding vertical
list (see page 79). After an insertion item is put on the vertical list the page
builder is exercised.

29.2 Insertion class declaration

In the plain format the number for a new insertion class is allocated by
\newinsert:

\newinsert\myinsert % new insertion class

which uses \chardef to assign a number to the control sequence.
Insertion classes are allocated numbering from 254 downward. As box 255

is used for output, this allocation scheme leaves \skip255, \dimen255, and \count255
free for scratch use.

29.3 Insertion parameters

For each insertion class n four registers are allocated:

• \boxn When the output routine is active this box contains the insertion
items of class n that should be placed on the current page.

• \dimenn This is the maximum space allotted for insertions of class n per
page. If this amount would be exceeded TEX will split insertions.

264 第 29 章 Insertions

• \skipn Glue of this size is added the first time an insertion item of class n

is added to the current page. This is useful for such phenomena as a rule
separating the footnotes from the text of the page.

• \countn Each insertion item is a vertical list, so it has a certain height.
However, the effective height, the amount of influence it has on the text
height of the page, may differ from this real height. The value of \countn
is then 1000 times the factor by which the height should be multiplied to
obtain the effective height.
Consider the following examples:

– Marginal notes do not affect the text height, so the factor should be 0.

– Footnotes set in double column mode affect the page by half of their
height: the count value should by 500.

– Conversely, footnotes set at page width underneath a page in double
column mode affect both columns, so – provided that the double column
mode is implemented by applying \vsplit to a double-height column –
the count value should be 2000.

29.4 Moving insertion items from the contributions list

The most complicated issue with insertions is the algorithm that adds in-
sertion items to the main vertical list, and calculates breakpoints if necessary.

TEX never changes the \vsize, but it diminishes the \pagegoal by the (ef-
fective) heights of the insertion items that will appear before a page break.
Thus the output routine will receive a \box255 that has height \pagegoal, not
necessarily \vsize.

1. When the first insertion of a certain class n occurs on the current page TEX
has to account for the quantity \skipn. This step is executed only if no
earlier insertion item of this class occurs on the vertical list – this includes
insertions that were split – but \boxn need not be empty at this time.
If \boxn is not empty, its height plus depth is multiplied by \countn/1000

and the result is subtracted from \pagegoal. Then the \pagegoal is di-
minished by the natural component of \skipn. Any stretch and shrink of
\skipn are incorporated in \pagestretch and \pageshrink respectively.

2. If there is a split insertion of class n on the page – this case and the previous
step in the algorithm are mutually exclusive – the \floatingpenalty is
added to \insertpenalties. A split insertion is an insertion item for which

29.5 Insertions in the output routine 265

a breakpoint has been calculated as it will not fit on the current page in its
entirety. Thus the insertion currently under consideration will certainly
not wind up on the current page.

3. After the preliminary action of the two previous points TEX will place the
actual insertion item on the main vertical list, at the end of the current
contributions. First it will check whether the item will fit without being
split.
There are two conditions to be checked:

• adding the insertion item (plus all previous insertions of that class) to
\boxn should not let the height plus depth of that box exceed \dimenn,
and

• either the effective height of the insertion is negative, or \pagetotal
plus \pagedepth minus \pageshrink plus the effective size of the in-
sertion should be less than \pagegoal.

If these conditions are satisfied, \pagegoal is diminished by the effective
size of the insertion item, that is, by the height plus depth, multiplied by
\countn/1000.

4. Insertions that fail on one of the two conditions in the previous step of the
algorithm will be considered for splitting. TEX will calculate the size of the
maximal portion to be split off the insertion item, such that

(a) adding this portion together with earlier insertions of this class to
\boxn will not let the size of the box exceed \dimenn, and

(b) the effective size of this portion, added to \pagetotal plus \pagedepth,
will not exceed \pagegoal. Note that \pageshrink is not taken into
account this time, as it was in the previous step.

Once this maximal size to be split off has been determined, TEX locates the
least-cost breakpoint in the current insertion item that will result in a box
with a height that is equal to this maximal size. The penalty associated
with this breakpoint is added to \insertpenalties, and \pagegoal is di-
minished by the effective height plus depth of the box to be split off the
insertion item.

29.5 Insertions in the output routine

When the output routine comes into action – more precisely: when TEX
starts processing the tokens in the \output token list – all insertions that should

266 第 29 章 Insertions

be placed on the current page have been put in their boxes, and it is the respon-
sibility of the output routine to put them somewhere in the box that is going to
be shipped out.

例子：The plain TEX output routine handles top inserts and footnotes
by packaging the following sequence:

\ifvoid\topins \else \unvbox\topins \fi
\pagebody
\ifvoid\footins \else \unvbox\footins \fi

Unboxing the insertion boxes makes the glue on various parts of the
page stretch or shrink in a uniform manner.

With TEX3 the insertion mechanism has been extended slightly:
the parameter \holdinginserts can be used to specify that insertions should
not yet be placed in their boxes. This is very useful if the output routine wants to
recalculate the \vsize, or if the output routine is called to do other intermediate
calculations instead of ejecting a page.

During the output routine the parameter \insertpenalties holds the num-
ber of insertion items that are being held over for the next page. In the plain
TEX output routine this is used after the last page:

\def\dosupereject{\ifnum\insertpenalties>0
% something is being held over

\line{}\kern-\topskip\nobreak\vfill\supereject\fi}

29.6 Plain TEX insertions
The plain TEX format has only two insertion classes: the footnotes and the

top inserts. The macro \pageinsert generates top inserts that are stretched
to be exactly \vsize high. The \midinsert macro tests whether the vertical
material specified by the user fits on the page; if so, it is placed there; if not, it
is converted to a top insert.

Footnotes are allowed to be split, but once one has been split no further
footnotes should appear on the current page. This effect is attained by setting

\floatingpenalty=20000

The \floatingpenalty is added to \insertpenalties if an insertion follows a
split insertion of the same class. However, \floatingpenalty > 10 000 has
infinite cost, so TEX will take an earlier breakpoint for splitting off the page
from the vertical list.

Top inserts essentially contain only a vertical box which holds whatever the
user specified. Thus such an insert cannot be split. However, the \endinsert

29.6 Plain TEX insertions 267

macro puts a \penalty100 on top of the box, so the insertion can be split with an
empty part before the split. The effect is that the whole insertion is carried over
to the next page. As the \floatingpenalty for top inserts is zero, arbitrarily
many of these inserts can be moved forward until there is a page with sufficient
space.

Further examples of insertion macros can be found in [40].

第 30 章 File Input and Output

This chapter discusses the various ways in which TEX can read from and
write to external files.

\input Read a specified file as TEX input.

\endinput Terminate inputting the current file after the current line.

\pausing Specify that TEX should pause after each line that is read from a file.

\inputlineno Number of the current input line.

\message Write a message to the terminal.

\write Write a ⟨general text⟩ to the terminal or to a file.

\read Read a line from a stream into a control sequence.

\newread \newwrite Macro for allocating a new input/output stream.

\openin \closein Open/close an input stream.

\openout \closeout Open/close an output stream.

\ifeof Test whether a file has been fully read, or does not exist.

\immediate Prefix to have output operations executed right away.

\escapechar Number of the character that is used when control sequences
are being converted into character tokens. IniTEX default: 92.

\newlinechar Number of the character that triggers a new line in \write and
\message statements.

30.1 Including files: \input and \endinput

Large documents can be segmented in TEX by putting parts in separate in-
put files, and loading these with \input into the master file. The exact syntax
for file names is implementation dependent; most of the time a .tex file exten-
sion is assumed if no explicit extension is given. File names can be delimited

268

30.2 File I/O 269

with a space or with \relax. The \input command is expandable.
If TEX encounters in an input file the \endinput statement, it acts as if

the file ends after the line on which the statement occurs. Any statements
on the same line as \endinput are still executed. The \endinput statement is
expandable.

30.2 File I/O

TEX supports input and output streams for reading and writing files one
line at a time.

30.2.1 Opening and closing streams

TEX supports up to 16 simultaneous input and 16 output streams. The plain
TEX macros \newread and \newwrite give the number of an unused stream. This
number is assigned by a \chardef command. Input streams are completely
independent of output streams.

Input streams are opened by

\openin⟨4-bit number⟩⟨equals⟩⟨filename⟩

and closed by

\closein⟨4-bit number⟩

Output streams are opened by

\openout⟨4-bit number⟩⟨equals⟩⟨filename⟩

and closed by

\closeout⟨4-bit number⟩

If an output file does not yet exist, it is created by \openout; if it did exist,
an \openout will cause it to be overwritten.

The output operations \openout, \closeout, and \write can all three be
prefixed by \immediate; see below.

30.2.2 Input with \read

In addition to the \input command, which reads a whole file, TEX has the
\read operation, which reads one line from a file (or from the user terminal).
The syntax of the read command is

\read⟨number⟩to⟨control sequence⟩

270 第 30 章 File Input and Output

The effect of this statement is that one input line is read from the designated
stream, and the control sequence is defined as a macro without parameters,
having that line as replacement text.

If the input line is not balanced with respect to braces, TEX will read more
than one line, continuing for as long as is necessary to get a balanced token list.
TEX implicitly appends an empty line to each input stream, so the last \read
operation on a stream will always yield a single \par token.

Read operations from any stream outside the range 0–15 – or streams not
associated with an open file, or on which the file end has been reached – read
from the terminal. If the stream number is positive the user is prompted with
the name of the control sequence being defined by the \read statement.

例子：

\read16 to \data

displays a prompt

\data=

and typing ‘my name’ in response makes the read statement equiva-
lent to

\def\data{my name }

The space at the end of the input derives from the line end; to prevent
this one could write

{\endlinechar=-1 \global\read16 to \data}

30.2.3 Output with \write

TEX’s \write command

\write⟨number⟩⟨general text⟩

writes a balanced token list to a file which has been opened by \openout, to the
log file, or to the terminal.

Write operations to a stream outside 0–15 – or to a stream that is not as-
sociated with an open file – go to the log file; if the stream number is positive
they go to the terminal as well as to the log file.

The token list argument of \write, defined as

⟨general text⟩ −→ ⟨filler⟩{⟨balanced text⟩⟨right brace⟩

can have an implicit opening brace. This argument is expanded as if it were
the replacement text of an \edef, so, for instance, any macros and conditionals
appearing are expanded. No commands are executed, however. This expansion

30.3 Whatsits 271

occurs at the time of shipping out; see below. Until that time the argument
token list is stored in a whatsit item on the current list. See further Chapter 12
for a discussion of expansion during writing.

A control sequence output by \write (or \message) is represented with a
trailing space, and using character number \escapechar for the escape charac-
ter. The IniTEX default for this is 92, the code for the backslash. The trailing
space can be prevented by prefixing the control sequence with \string.

30.3 Whatsits

There is an essential difference in execution between input and output:
operations concerning output (\openout, \closeout, \write) are executed asyn-
chronously. That is, instead of being done immediately they are saved until the
box in which they appear is shipped out to the dvi file.

Writes and the other two output operations are placed in ‘whatsit’ items on
whichever list is currently being built. The actual operation occurs when the
part of the page that has the item is shipped out to the dvi file. This delayed
output is made necessary by TEX’s asynchronous output routine behaviour. See
a worked-out example on page 142.

An \immediate\write – or any other \immediate output operation – is exe-
cuted on the spot, and does not place a whatsit item on the current list.

The argument of a \special command (see page 284) is also placed in a
whatsit.

Whatsit items in leader boxes are ignored.

30.4 Assorted remarks

30.4.1 Inspecting input

TEX records the current line number in the current input file in the ⟨internal
integer⟩ parameter \inputlineno (in TEX3).

If the parameter \pausing is positive, TEX shows every line that is input
on the terminal screen, and gives the user the opportunity to insert commands.
These can for instance be \show commands. Inserted commands are treated as
if they were directly in the source file: it is for instance not necessary to prefix
them with ‘i’, as would be necessary when TEX pauses for an error.

272 第 30 章 File Input and Output

30.4.2 Testing for existence of files

TEX is not the friendliest of systems when you ask it to input a non-existing
file. Therefore the following sequence of commands can be used to prevent trou-
ble:

\newread\instream \openin\instream= fname.tex
\ifeof\instream \message{File 'fname' does not exist!}
\else \closein\instream \input fname.tex
\fi

Here an input stream is opened with the given file name. The end-of-file test
is also true if an input stream does not correspond to a physical file, so if this
conditional is not true, the file exists and an \input command can safely be
given.

30.4.3 Timing problems

The synchronization between write operations on the one hand, and open-
ing/closing operations of files on the other hand, can be a crucial point. Auxil-
iary files, such as are used by various formats to implement cross-references,
are a good illustration of this.

Suppose that during a run of TEX the auxiliary file is written, and at the
end of the run it has to be input again for a variety of purposes (such as see-
ing whether references have changed). An \input command is executed right
away, so the file must have been closed with an \immediate\closeout. How-
ever, now it becomes possible that the file is closed before all writes to it have
been performed. The following sequence remedies this:

\par\vfil\penalty -10000 \immediate\closeout\auxfile

The first three commands activate the output routine in order to close off the
last page, so all writes will indeed have been performed before the file is closed.

30.4.4 \message versus \immediate\write16

Messages to the user can be given using \message⟨general text⟩, which
writes to the terminal. Messages are appended to one another; the line is
wrapped when the line length (a TEX compile-time constant) has been reached.
In TEX version2, a maximum of 1000 characters is written per message; this is
not a compile-time constant, but is hard-wired into the TEX program.

Each message given with \immediate\write starts on a new line; the user
can force a new line in the message by including the character with number \newlinechar.

30.4 Assorted remarks 273

This parameter also works in \message. The plain TEX default for \newlinechar
is -1; the LATEX default of 10 allows you to write \message{two^^Jlines}.

30.4.5 Write inside a vertical box

Since a write operation winds up on the vertical list in a whatsit, issuing
one at the start of a \vtop will probably influence the height of that box (see
Chapter 5). As an example,

have the \vtop{\write\terminal{Hello!}\hbox{more text}}
dangling from

will have the
more text

dangling from the baseline (and when this book is TEXed
the message ‘Hello!’ appears on the screen).

30.4.6 Expansion and spaces in \write and \message

Both \write and \message expand their argument as if it were the replace-
ment text of an \edef. Therefore

\def\a{b}\message{\a}

will write out ‘b’.
Unexpandable control sequences are displayed with a trailing space (and

prefixed with the \escapechar):
\message{\hbox\vbox!}

will write out ‘\hbox \vbox !’. Undefined control sequences give an error here.
Expandable control sequences can be written out with some care:
\message{\noexpand\ifx}
\message{\string\ifx}
{\let\ifx\relax \message{\ifx}}

all write out ‘\ifx’.
Note, however, that spaces after expandable control sequences are removed

in the input processor, which goes into state S after a control sequence. There-
fore

\def\a{b}\def\c{d}
\message{\a \c}

writes out ‘bd’. Inserting a space can be done as follows:
\def\space{ } % in plain TeX
\message{\a\space\c}

displays ‘b d’. Note that

\message{\a{ }\c}

274 第 30 章 File Input and Output

does not work: it displays ‘b{ }d’ since braces are unexpandable character to-
kens.

第 31 章 Allocation

TEX has registers of a number of types. For some of these, explicit com-
mands exist to define a synonym for a certain register; for all of them macros
exist in the plain format to allocate an unused register. This chapter treats the
synonym and allocation commands, and discusses some guidelines for macro
writers regarding allocation.

\countdef Define a synonym for a \count register.

\dimendef Define a synonym for a \dimen register.

\muskipdef Define a synonym for a \muskip register.

\skipdef Define a synonym for a \skip register.

\toksdef Define a synonym for a \toks register.

\newbox Allocate an unused \box register.

\newcount Allocate an unused \count register.

\newdimen Allocate an unused \dimen register.

\newfam Allocate an unused math family.

\newinsert Allocate an unused insertion class.

\newlanguage (TEX3 only) Allocate a new language number.

\newmuskip Allocate an unused \muskip register.

\newskip Allocate an unused \skip register.

\newtoks Allocate an unused \toks register.

\newread Allocate an unused input stream.

\newwrite Allocate an unused output stream.

275

276 第 31 章 Allocation

31.1 Allocation commands
In plain TEX, \new... macros are defined for allocation of registers. The

registers of TEX fall into two classes that are allocated in different ways. This
is treated below.

The \newlanguage macro of plain TEX does not allocate any register. In-
stead it merely assigns a number, starting from 0. TEX (version 3) can have at
most 256 different sets of hyphenation patterns.

The \new... macros of plain TEX are defined to be \outer (see Chapter 11
for a precise explanation), which precludes use of the allocation macros in other
macros. Therefore the LATEX format redefines these macros without the \outer
prefix.

31.1.1 \count, \dimen, \skip, \muskip, \toks

For these registers there exists a ⟨registerdef⟩ command, for instance \countdef,
to couple a specific register to a control sequence:

⟨registerdef⟩⟨control sequence⟩⟨equals⟩⟨8-bit number⟩
After the definition
\countdef\MyCount=42

the allocated register can be used as
\MyCount=314

or
\vskip\MyCount\baselineskip

The ⟨registerdef⟩ commands are used in plain TEX macros \newcount et
cetera that allocate an unused register; after

\newcount\MyCount

\MyCount can be used exactly as in the above two examples.

31.1.2 \box, \fam, \write, \read, \insert

For these registers there exists no ⟨registerdef⟩ command in TEX, so \chardef
is used to allocate box registers in the corresponding plain TEX macros \newbox,
for instance.

The fact that \chardef is used implies that the defined control sequence
does not stand for the register itself, but only for its number. Thus after

\newbox\MyBox

it is necessary to write
\box\MyBox

31.2 Ground rules for macro writers 277

Leaving out the \box means that the character in the current font with number
\MyBox is typeset. The \chardef command is treated further in Chapter 3.

31.2 Ground rules for macro writers
The \new... macros of plain TEX have been designed to form a foundation

for macro packages, such that several of such packages can operate without col-
lisions in the same run of TEX. In appendix B of the TEX book Knuth formulates
some ground rules that macro writers should adhere to.

1. The \new... macros do not allocate registers with numbers 0–9. These
can therefore be used as ‘scratch’ registers. However, as any macro family
can use them, no assumption can be made about the permanency of their
contents. Results that are to be passed from one call to another should
reside in specifically allocated registers.
Note that count registers 0–9 are used for page identification in the dvi file
(see Chapter 33), so no global assignments to these should be made.

2. \count255, \dimen255, and \skip255 are also available. This is because in-
serts are allocated from 254 downward and, together with an insertion box,
a count, dimen, and skip register, all with the same number, are allocated.
Since \box255 is used by the output routine (see Chapter 28), the count,
dimen, and skip with number 255 are freely available.

3. Assignments to scratch registers 0, 2, 4, 6, 8, and 255 should be local; as-
signments to registers 1, 3, 5, 7, 9 should be \global (with the exception
of the \count registers). This guideline prevents ‘save stack build-up’ (see
Chapter 35).

4. Any register can be used inside a group, as TEX’s grouping mechanism will
restore its value outside the group. There are two conditions on this use
of a register: no global assignments should be made to it, and it must not
be possible that other macros may be activated in that group that perform
global assignments to that register.

5. Registers that are used over longer periods of time, or that have to survive
in between calls of different macros, should be allocated by \new....

第 32 章 Running TEX

This chapter treats the run modes of TEX, and some other commands as-
sociated with the job being processed.

\everyjob Token list that is inserted at the start of each new job.

\jobname Name of the main TEX file being processed.

\end Command to finish off a run of TEX.

\bye Plain TEX macro to force the final output.

\pausing Specify that TEX should pause after each line that is read from a file.

\errorstopmode TEX will ask for user input on the occurrence of an error.

\scrollmode TEX fixes errors itself, but will ask the user for missing files.

\nonstopmode TEX fixes errors itself, and performs an emergency stop on
serious errors such as missing input files.

\batchmode TEX fixes errors itself and performs an emergency stop on serious
errors such as missing input files, but no terminal output is generated.

32.1 Jobs

TEX associates with each run a name for the file being processed: the
\jobname. If TEX is run interactively – meaning that it has been invoked with-
out a file argument, and the user types commands – the jobname is texput.

The \jobname can be used to generate the names of auxiliary files to be
read or written during the run. For instance, for a file story.tex the \jobname
is story, and writing

\openout\Auxiliary=\jobname.aux
\openout\TableOfContents=\jobname.toc

will create the files story.aux and story.toc.

278

32.1 Jobs 279

32.1.1 Start of the job

TEX starts each job by inserting the \everyjob token list into the command
stream. Setting this variable during a run of TEX has no use, but a format can
use it to identify itself to the user. If a format fills the token list, the commands
therein are automatically executed when TEX is run using that format.

32.1.2 End of the job

A TEX job is terminated by the \end command. This may involve first forc-
ing the output routine to process any remaining material (see Chapter 27). If
the end of job occurs inside a group TEX will give a diagnostic message. The
\end command is not allowed in internal vertical mode, because this would be
inside a vertical box.

Usually some sugar coating of the \end command is necessary. For instance
the plain TEX macro \bye is defined as

\def\bye{\par\vfill\supereject\end}

where the \supereject takes care of any leftover insertions.

32.1.3 The log file

For each run TEX creates a log file. Usually this will be a file with as
name the value of \jobname, and the extension .log. Other extensions such as
.lis are used by some implementations. This log file contains all information
that is displayed on the screen during the run of TEX, but it will display some
information more elaborately, and it can contain statistics that are usually not
displayed on the screen. If the parameter \tracingonline has a positive value,
all the log file information will be shown on the screen.

Overfull and underfull boxes are reported on the terminal screen, and they
are dumped using the parameters \showboxdepth and \showboxbreadth in the
log file (see Chapter 34). These parameters are also used for box dumps caused
by the \showbox command, and for the dump of boxes written by \shipout if
\tracingoutput is set to a positive value.

Statistics generated by commands such as \tracingparagraphswill be writ-
ten to the log file; if \tracingonline is positive they will also be shown on the
screen.

Output operations to a stream that is not open, or to a stream with a num-
ber that is not in the range 0–15, go to the log file. If the stream number is
positive, they also go to the terminal.

280 第 32 章 Running TEX

32.2 Run modes
By default, TEX goes into \errorstopmode if an error occurs: it stops and

asks for input from the user. Some implementations have a way of forcing TEX
into errorstopmode when the user interrupts TEX, so that the internal state of
TEX can be inspected (and altered). See page 295 for ways to switch the run
mode when TEX has been interrupted.

Often, TEX can fix an error itself if the user asks TEX just to continue (usu-
ally by hitting the return key), but sometimes (for instance in alignments) it
may take a while before TEX is on the right track again (and sometimes it never
is). In such cases the user may want to turn on \scrollmode, which instructs
TEX to fix as best it can any occurring error without confirmation from the user.
This is usually done by typing ‘s’ when TEX asks for input.

In \scrollmode, TEX also does not ask for input after \show... commands.
However, some errors, such as a file that could not be found for \input, are not
so easily remedied, so the user will still be asked for input.

With \nonstopmode TEX will scroll through errors and, in the case of the
kind of error that cannot be recovered from, it will make an emergency stop,
aborting the run. Also TEX will abort the run if a \read is attempted from
the terminal. The \batchmode differs only from nonstopmode in that it gives
messages only to the log file, not to the terminal.

第 33 章 TEX and the Outside World

This chapter treats those commands that bear relevance to dvi files and
formats. It gives some global information about IniTEX, font and format files,
Computer Modern typefaces, and web.

\dump Dump a format file; possible only in IniTEX, not allowed inside a group.

\special Write a ⟨balanced text⟩ to the dvi file.

\mag 1000 times the magnification of the document.

\year The year of the current job.

\month The month of the current job.

\day The day of the current job.

\time Number of minutes after midnight that the current job started.

\fmtname Macro containing the name of the format dumped.

\fmtversion Macro containing the version of the format dumped.

33.1 TEX, IniTEX, VirTEX
In the terminology established in TEX: the Program, [23], TEX programs

come in three flavours. IniTEX is a version of TEX that can generate formats;
VirTEX is a production version without preloaded format, and TEX is a produc-
tion version with preloaded (plain) format. Unfortunately, this terminology is
not adhered to in general. A lot of systems do not use preloaded formats (the
procedure for making them may be impossible on some operating systems), and
call the ‘virgin TEX’ simply TEX. This manual also follows that convention.

33.1.1 Formats: loading

A format file (usually with extension .fmt) is a compact dump of TEX’s
internal structures. Loading a format file takes a considerably shorter time

281

282 第 33 章 TEX and the Outside World

than would be needed for loading the font information and the macros that
constitute the format.

Both TEX and IniTEX can load a format; the user specifies this by putting
the name on the command line

% tex &plain

or at the ** prompt
% tex
This is TeX. Version
** &plain

preceded by an ampersand (for UNIX, this should be \& on the command line).
An input file name can follow the format name in both places.

IniTEX does not need a format, but if no format is specified for (Vir)TEX, it
will try to load the plain format, and halt if that cannot be found.

33.1.2 Formats: dumping

IniTEX is the only version of TEX that can dump a format, since it is the
only version of TEX that has the command \dump, which causes the internal
structures to be dumped as a format. It is also the only version of TEX that
has the command \patterns, which is needed to specify a list of hyphenation
patterns.

Dumping is not allowed inside a group, that is
{ ... \dump }

is not allowed. This restriction prevents difficulties with TEX’s save stack. After
the \dump command TEX gives an elaborate listing of its internal state, and of
the font names associated with fonts that have been loaded and ends the job.

An interesting possibility arises from the fact that IniTEX can both load
and dump a format. Suppose you have written a set of macros that build on top
of plain TEX, superplain.tex. You could then call

% initex &plain superplain
*\dump

and get a format file superplain.fmt that has all of plain, and all of your macros.

33.1.3 Formats: preloading

On some systems it is possible to interrupt a running program, and save
its ‘core image’ such that this can be started as an independent program. The
executable made from the core image of a TEX program interrupted after it
has loaded a format is called a TEX program with preloaded format. The idea

33.1 TEX, IniTEX, VirTEX 283

behind preloaded formats is that interrupting TEX after it has loaded a format,
and making this program available to the user, saves in each run the time for
loading the format. In the good old days when computers were quite a bit slower
this procedure made sense. Nowadays, it does not seem so necessary. Besides,
dumping a core image may not always be possible.

33.1.4 The knowledge of IniTEX

If no format has been loaded, IniTEX knows very little. For instance, it has
no open/close group characters. However, it can not be completely devoid of
knowledge lest there be no way to define anything.

Here is the extent of its knowledge.

• \catcode`\\=0, \escapechar=`\\ (see page 27).

• \catcode`\^^M=5, \endlinechar=`\^^M (see page 27).

• \catcode`\ =10 (see page 28).

• \catcode`\%=14 (see page 28).

• \catcode`\^^?=15 (see page 28).

• \catcodex=11 for x = `a..`z,`A..`Z (see page 28).

• \catcodex=12 for all other character codes
(see page 28).

• \sfcodex=999 for x = `A..`Z, \sfcodex=1000 for all other characters (see
page 202).

• \lccode`a..`z,`A..`Z=`a..`z, \uccode`a..`z,`A..`Z=`A..`Z, \lccodex=0,
\uccodex=0 for all other characters (see page 46).

• \delcode`.=0, \delcodex=-1 for all other characters (see page 207).

• \mathcodex="!7100+x for all lowercase and uppercase letters, \mathcodex="!7000+

x for all digits, \mathcodex=x for all other characters (see page 212).

• \tolerance=10000, \mag=1000, \maxdeadcycles=25.

33.1.5 Memory sizes of TEX and IniTEX

The main memory size of TEX and IniTEX is controlled by four constants in
the source code: mem_bot, mem_top, mem_min, and mem_max. For IniTEX’s memory
mem_bot = mem_min and mem_top = mem_max; for TEX mem_bot and mem_top record
the main memory size of the IniTEX used to dump the format. Thus versions of
TEX and IniTEX have to be adapted to each other in this respect.

284 第 33 章 TEX and the Outside World

TEX’s own main memory can be bigger than that of the corresponding IniTEX:
in general mem_min ≤ mem_bot and mem_top ≤ mem_max.

For IniTEX a smaller main memory can suffice, as this program is typi-
cally not meant to do real typesetting. There may even be a real need for the
main memory to be smaller, because IniTEX needs a lot of auxiliary storage for
initialization and for building the hyphenation table.

33.2 More about formats

33.2.1 Compatibility

TEX has a curious error message: ‘Fatal format error: I’m stymied’, which is
given if TEX tries to load a format that was made with an incompatible version
of IniTEX. See the point above about memory sizes, and Chapter 35 for the hash
size (parameters hash_size and hash_prime) and the hyphenation exception
dictionary (parameter hyph_size).

33.2.2 Preloaded fonts

During a run of TEX the only information needed about fonts is the data
that is found in the tfm files (see below). Since a run of TEX, especially if the
input contains math material, can easily access 30–40 fonts, the disk access for
all the tfm files can become significant. Therefore the plain format and LATEX
load these metrics files in IniTEX. A TEX version using such a format does not
need to load any tfm files.

On the other hand, if a format has the possibility of accessing a range of
typefaces, it may be advantageous to have metrics files loaded on demand dur-
ing the actual run of TEX.

33.2.3 The plain format

The first format written for TEX, and the basis for all later ones, is the plain
format, described in the TEX book. It is a mixture of

• definitions and macros one simply cannot live without such as the ini-
tial \catcode assignments, all of the math delimiter definitions, and the
\new... macros;

• constructs that are useful, but for which LATEX and other packages use a
different implementation, such as the tabbing environment; and

33.2 More about formats 285

• some macros that are insufficient for any but the simplest applications:
\item and \beginsection are in this category.

It is the first category which Knuth meant to serve as a foundation for fu-
ture macro packages, so that they can live peacefully together (see Chapter 31).
This idea is reflected in the fact that the name ‘plain’ is not capitalized: it is the
basic set of macros.

33.2.4 The LATEX format

The LATEX format, written by Leslie Lamport of Digital Equipment Corpo-
ration and described in [29], was released around 1985. The LATEX format, using
its own version of plain.tex (called lplain.tex), is not compatible with plain
TEX; a number of plain macros are not available. Still, it contains large parts
of the plain format (even when they overlap with its own constructs).

LATEX is a powerful format with facilities such as marginal notes, floating
objects, cross referencing, and automatic table of contents generation. Its main
drawback is that the ‘style files’ which define the actual layout are quite hard
to write (although LATEX is in the process of a major revision, in which this
problem will be tackled; see [34] and [33]). As a result, people have had at their
disposal mostly the styles written by Leslie Lamport, the layout of which is
rather idiosyncratic. See [6] for a successful attempt to replace these styles.

33.2.5 Mathematical formats

There are two formats with extensive facilities for mathematics typeset-
ting: AmsTEX [43] (which originated at the American Mathematical Society)
and LAMSTEX [44]. The first of these includes more facilities than plain TEX
or LATEX for typesetting mathematics, but it lacks features such as automatic
numbering and cross-referencing, available in LATEX, for instance. LAMSTEX,
then, is the synthesis of AmsTEX and LATEX. Also it includes still more features
for mathematics, such as complicated tables and commutative diagrams.

33.2.6 Other formats

Other formats than the above exist: for instance, Phyzzx [51], TeXsis [35],
Macro TEX [15], eplain [4], and TEXT1 [13]. Typically, such formats provide the
facilities of LATEX, but try to be more easily adaptable by the user. Also, in
general they have been written with the intention of being an add-on product
to the plain format.

286 第 33 章 TEX and the Outside World

This book was, in its incarnation published by Addison-Wesley, also writ-
ten in an ‘other format’: the Lollipop format. This format does not contain user
macros, but the tools with which a style designer can program them; see [12].
The current version of this book is written in LATEX.

33.3 The dvi file
The dvi file (this term stands for ‘device independent’) contains the output

of a TEX run: it contains compactly dumped representations of boxes that have
been sent there by \shipout⟨box⟩. The act of shipping out usually occurs inside
the output routine, but this is not necessarily so.

33.3.1 The dvi file format

A dvi file is a byte-oriented file, consisting of a preamble, a postamble, and
a list of pages.

Access for subsequent software to a completed dvi file is strictly sequential
in nature: the pages are stored as a backwards linked list. This means that only
two ways of accessing are possible:

• given the start of a page, the next can be found by reading until an end-of-
page code is encountered, and

• starting at the end of the file pages can be read backwards at higher speed,
as each beginning-of-page code contains the byte position of the previous
one.

The preamble and postamble contain

• the magnification of the document (see below),

• the unit of measurement used for the document, and

• possibly a comment string.

The postamble contains in addition a list of the font definitions that appear on
the pages of the file.

Neither the preamble nor the postamble of the file contains a table of byte
positions of pages. The full definition of the dvi file format can be found in [23].

33.3.2 Page identification

Whenever a \shipout occurs, TEX also writes the values of counters 0–9
to the dvi file and the terminal. Ordinarily, only counter 0, the page number,
is used, and the other counters are zero. Those zeros are not output to the

33.4 Specials 287

terminal. The other counters can be used to indicate further structure in the
document. Log output shows the non-zero counters and the zero counters in
between.

33.3.3 Magnification

The magnification of a document can be indicated by the ⟨integer parame-
ter⟩ \mag, which specifies 1000 times the magnification ratio.

The dvi file contains the value of \mag for the document in its preamble
and postamble. If no true dimensions are used the dvi file will look the same
as when no magnification would have been used, except for the \mag value in
the preamble and the postamble.

Whenever a true dimension is used it is divided by the value of \mag, so
that the final output will have the dimension as prescribed by the user. The
\mag parameter cannot be changed after a true dimension has been used, or
after the first page has been shipped to the dvi file.

Plain TEX has the \magnification macro for globally sizing the document,
without changing the physical size of the page:

\def\magnification{\afterassignment\m@g\count@}
\def\m@g{\mag\count@
\hsize6.5truein\vsize8.9truein\dimen\footins8truein}

The explanation for this is as follows: the command \m@g is saved with an
\afterassignment command, and the magnification value (which is 1000 times
the actual magnification factor) is assigned to \count@. After this assignment,
the macro \m@g assigns the magnification value to \mag, and the horizontal and
vertical size are reset to their original values 6.5truein and 8.9truein. The
\footins is also reset.

33.4 Specials
TEX is to a large degree machineindependent, but it still needs a hook for

machine-dependent extensions. This is done through specials. The \special
command writes a ⟨balanced text⟩ to the dvi file which TEX does not interpret
like other token lists: it assumes that the printer driver knows what to do with
it. The \special command is not supposed to change the x and y position on
the page, so that the implementation of TEX remains independent of the actual
device driver that handles the \special.

The most popular application of specials is probably the inclusion of graphic
material, written in some page description language, such as PostScript. The

288 第 33 章 TEX and the Outside World

size of the graphics can usually be determined from the file containing it (in the
case of encapsulated PostScript through the ‘bounding box’ data), so TEX can
leave space for such material.

33.5 Time

TEX has four parameters, \year, \month, \day, and \time, that tell the time
and date when the current job started. After this, the parameters are not up-
dated. The user can change them without this having any effect.

All four parameters are integers; the \time parameter gives the number of
minutes since midnight that the current job started.

33.6 Fonts

Font information is split in the TEX system into the metric information
(how high, wide, and deep is a character), and the actual description of the
characters in a font. TEX, the formatter, needs only the metric information;
printer drivers and screen previewers need the character descriptions. With
this approach it is for instance possible for TEX to use with relative ease the
resident fonts of a printer.

33.6.1 Font metrics

The metric information of TEX’s fonts is stored in tfm files, which stands
for ‘TEX font metrics’ files. Metrics files contain the following information (see
[23] for the full definition):

• the design size of a font;

• the values for the \fontdimen parameters (see Chapter 4);

• the height, depth, width, and italic correction of individual characters;

• kerning tables;

• ligature tables;

• information regarding successors and extensions of math characters (see
Chapter 21).

Metrics files use a packed format, but they can be converted to and from a read-
able format by the auxiliary programs tftopl and pltotf (see [26]). Here pl
stands for ‘property list’, a term deriving from the programming language Lisp.

33.6 Fonts 289

Files in pl format are just text, so they can easily be edited; after conversion
they can then again be used as tfm files.

33.6.2 Virtual fonts

With virtual fonts (see [24]) it is possible that what looks like one font to
TEX resides in more than one physical font file. Also, virtual fonts can be used
to change in effect the internal organization of font files.

For TEX itself, the presence of virtual fonts makes no difference: everything
is still based on tfm files containing metric information. However, the screen or
printer driver that displays the resulting dvi file on the screen or on a printer
will search for files with extension .vf to determine how characters are to be
interpreted. The vf file can, for instance, instruct the driver to interpret a
character as a certain position in a certain font file, to interpret a character as
more than one position (a way of forming accented characters), or to include
\special information (for instance to set gray levels).

Readable variants of vf files have extension vpl, analogous to the pl files
for the tfm files; see above. Conversion between vf and vpl files can be per-
formed with the vftovp and vptovf programs.

However, because virtual fonts are a matter for device drivers, no more
details will be given in this book.

33.6.3 Font files

Character descriptions are stored in three types of files.

gf Generic Font files. This is the file type that the Metafont program generates.
There are not many previewers or printer drivers that use this type of file
directly.

pxl Pixel files. The pxl format is a pure bitmap format. Thus it is easy to
generate pxl files from, for instance, scanner images.
This format should be superseded by the pk format. Pixel files can become
rather big, as their size grows quadratically in the size of the characters.

pk Packed files. Pixel files can be packed by a form of run-length encoding: in-
stead of storing the complete bitmap only the starting positions and lengths
of ‘runs’ of black and white pixels are stored. This makes the size of pk files
approximately linear in the size of the characters. However, a previewer
or printer driver using a packed font file has to unpack it before it is able
to use it.

290 第 33 章 TEX and the Outside World

The following conversion programs exist: gftopxl, gftopk, pktopxl, pxltopk.

33.6.4 Computer Modern

The only family of typefaces that comes with TEX in the standard distribu-
tion is the Computer Modern family of typefaces. This is an adaptation (using
the terminology of [42]) by Donald Knuth of the Monotype Modern 8A typeface
that was used for the first volume of his Art of Computer Programming se-
ries. The ‘modern faces’ all derive from the types that were cut between 1780
and 1800 by Firmin Didot in France, Giambattista Bodoni in Italy, and Justus
Erich Walbaum in Germany. After the first two, these types are also called
‘Didone’ types. This name was coined in the Vox classification of types [50]. Ul-
timately, the inspiration for the Didone types is the ‘Romain du Roi’, the type
that was designed by Nicolas Jaugeon around 1692 for the French Imprimerie
Royale.

Didone types are characterized by a strong vertical orientation, and thin
hairlines. The vertical accent is strengthened by the fact that the insides of
curves are flattened. The result is a clear and brilliant page, provided that the
printing is done carefully and on good quality paper. However, they are quite
vulnerable; [48] compares them to the distinguished but fragile furniture from
the same period, saying one is afraid to use either, ‘for both seem in danger
of breaking in pieces’. With the current proliferation of low resolution (around
300 dot per inch) printers, the Computer Modern is a somewhat unfortunate
choice.

Recently, Donald Knuth has developed a new typeface (or rather, a sub-
family of typefaces) by changing parameters in the Computer Modern family.
The result is a so-called ‘Egyptian’ typeface: Computer Concrete [22]. The name
derives from the fact that it was intended primarily for the book Concrete Math-
ematics. Egyptian typefaces (they fall under the ‘Mécanes’ in the Vox classifi-
cation, meaning constructed, not derived from written letters) have a very uni-
form line width and square serifs. They do not have anything to do with Egypt;
such types happened to be popular in the first half of the nineteenth century
when Egyptology was developing and popular.

33.7 TEX and web

The TEX program is written in web, a programming language that can be
considered as a subset of Pascal, augmented with a preprocessor.

33.8 The TEX Users Group 291

TEX makes no use of some features of Pascal, in order to facilitate porting
to Pascal systems other than the one it was originally designed for, and even to
enable automatic translation to other programming languages such as C. For
instance, it does not use the Pascal With construct. Also, procedures do not have
output parameters; apart from writing to global variables, the only way values
are returned is through Function values.

Actually, web is more than a superset of a subset of Pascal (and to be more
precise, it can also be used with other programming languages); it is a ‘system of
structured documentation’. This means that the web programmer writes pieces
of program code, interspersed with their documentation, in one file. This idea
of ‘literate programming’ was introduced in [19]; for more information, see [41].

Two auxiliary programs, Tangle and Weave, can then be used to strip the
documentation and convert web into regular Pascal, or to convert the web file
into a TEX file that will typeset the program and documentation.

Portability of web programs is achieved by the ‘change file’ mechanism.
A change file is a list of changes to be made to the web file; a bit like a stream
editor script. These changes can comprise both adaptations of the web file to
the particular Pascal compiler that will be used, and bug fixes to TEX. Thus the
TeX.web file need never be edited.

33.8 The TEX Users Group
TEX users have joined into several users groups over the last decade. Many

national or language users groups exist, and a lot of them publish newsletters.
The oldest of all TEX users groups is simply called that: the TEX Users Group,
or TUG, and its journal is called TUGboat. You can reach them at

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311, USA

or electronically at office@tug.org on the Internet.

第 34 章 Tracing

TEX’s workings are often quite different from what the programmer ex-
pected, so there are ways to discover how TEX arrived at the result it did. The
\tracing... commands all write statistics information of a certain kind to the
log file (and to the terminal if \tracingonline is positive), and a number of
\show... commands can be used to ask the current status or value of various
items of TEX.

In the following list, only \show and \showthe display their output on the
terminal by default, other \show... and \tracing... commands write to the
log file. They will write in addition to the terminal if \tracingonline is positive.

\meaning Give the meaning of a control sequence as a string of characters.

\show Display the meaning of a control sequence.

\showthe Display the result of prefixing a token with \the.

\showbox Display the contents of a box.

\showlists Display the contents of the partial lists currently built in all
modes. This is treated on page 80.

\tracingcommands If this is 1 TEX displays primitive commands executed; if
this is 2 or more the outcome of conditionals is also recorded.

\tracingmacros If this is 1, TEX shows expansion of macros that are
performed and the actual values of the arguments; if this is 2 or more
⟨token parameter⟩s such as \output and \everypar are also traced.

\tracingoutput If this is positive, the log file shows a dump of boxes that are
shipped to the dvi file.

\showboxdepth The number of levels of box dump that are shown when boxes
are displayed.

\showboxbreadth Number of successive elements on each level that are shown
when boxes are displayed.

292

34.1 Meaning and content: \show, \showthe, \meaning 293

\tracingonline If this parameter is positive, TEX will write trace information
to the terminal in addition to the log file.

\tracingparagraphs If this parameter is positive, TEX generates a trace of the
line breaking algorithm.

\tracingpages If this parameter is positive, TEX generates a trace of the page
breaking algorithm.

\tracinglostchars If this parameter is positive, TEX gives diagnostic
messages whenever a character is accessed that is not present in a font.
Plain default: 1.

\tracingrestores If this parameter is positive, TEX will report all values that
are restored when a group ends.

\tracingstats If this parameter is 1, TEX reports at the end of the job the
usage of various internal arrays; if it is 2, the memory demands are given
whenever a page is shipped out.

34.1 Meaning and content: \show, \showthe, \meaning

The meaning of control sequences, and the contents of those that repre-
sent internal quantities, can be obtained by the primitive commands \show,
\showthe, and \meaning.

The control sequences \show and \meaning are similar: the former will give
output to the log file and the terminal, whereas the latter will produce the same
tokens, but they are placed in TEX’s input stream.

The meaning of a primitive command of TEX is that command itself:
\show\baselineskip

gives
\baselineskip=\baselineskip

The meaning of a defined quantity is its definition:
\show\pageno

gives
\pageno=\count0

The meaning of a macro is its parameter text and replacement text:
\def\foo#1?#2\par{\set{#1!}\set{#2?}}
\show\foo

gives
\foo=macro:
#1?#2\par ->\set {#1!}\set {#2?}

294 第 34 章 Tracing

For macros without parameters the part before the arrow (the parameter text)
is empty.

The \showthe command will display on the log file and terminal the tokens
that \the produces. After \show, \showthe, \showbox, and \showlists TEX asks
the user for input; this can be prevented by specifying \scrollmode. Charac-
ters generated by \meaning and \the have category 12, except for spaces (see
page 32); the value of \escapechar is used when control sequences are repre-
sented.

34.2 Show boxes: \showbox, \tracingoutput

If \tracingoutput is positive the log file will receive a dumped represen-
tation of all boxes that are written to the dvi file with \shipout. The same
representation is used by the command \showbox⟨8-bit number⟩.

In the first case TEX will report ‘Completed box being shipped out’; in the
second case it will enter \errorstopmode, and tell the user ‘OK. (see the tran-
script file)’. If \tracingonline is positive, the box is also displayed on the ter-
minal; if \scrollmode has been specified, TEX does not stop for input.

The upper bound on the number of nested boxes that is dumped is \showboxdepth;
each time a level is visited at most \showboxbreadth items are shown, the re-
mainder of the list is summarized with etc. For each box its height, depth, and
width are indicated in that order, and for characters it is stated from what font
they were taken.

例子：After

\font\tenroman=cmr10 \tenroman
\setbox0=\hbox{g}
\showbox0

the log file will show

\hbox(4.30554+1.94444)x5.00002
.\tenroman g

indicating that the box was 4.30554pt high, 1.94444pt deep, and
5.00002pt wide, and that it contained a character ‘g’ from the font
\tenroman. Note that the fifth decimal of all sizes may be rounded
because TEX works with multiples of 2−16pt.

The next example has nested boxes,
\vbox{\hbox{g}\hbox{o}}

34.2 Show boxes: \showbox, \tracingoutput 295

and it contains \baselineskip glue between the boxes. After a \showbox com-
mand the log file output is:

\vbox(16.30554+0.0)x5.00002
.\hbox(4.30554+1.94444)x5.00002
..\tenroman g
.\glue(\baselineskip) 5.75002
.\hbox(4.30554+0.0)x5.00002
..\tenroman o

Each time a new level is entered an extra dot is added to the front of the line.
Note that TEX tells explicitly that the glue is \baselineskip glue; it inserts
names like this for all automatically inserted glue. The value of the baseli-
neskip glue here is such that the baselines of the boxes are at 12 point distance.

Now let us look at explicit (user) glue. TEX indicates the ratio by which it
is stretched or shrunk.

例子：

\hbox to 20pt {\kern10pt \hskip0pt plus 5pt}

gives (indicating that the available stretch has been multiplied by 2.0):

\hbox(0.0+0.0)x20.0, glue set 2.0
.\kern 10.0
.\glue 0.0 plus 5.0

and

\hbox to 0pt {\kern10pt \hskip0pt minus 20pt}

gives (the shrink has been multiplied by 0.5)

\hbox(0.0+0.0)x0.0, glue set - 0.5
.\kern 10.0
.\glue 0.0 minus 20.0

respectively.

This is an example with infinitely stretchable or shrinkable glue:
\hbox(4.00000+0.14000)x15.0, glue set 9.00000fil

This means that the horizontal box contained fil glue, and it was set such that
its resulting width was 9pt.

Underfull boxes are dumped like all other boxes, but the usual ‘Underfull
hbox detected at line...’ is given. Overfull horizontal boxes contain a verti-
cal rule of width \overfullrule:

\hbox to 5pt {\kern10pt}

gives

296 第 34 章 Tracing

\hbox(0.0+0.0)x5.0
.\kern 10.0
.\rule(*+*)x5.0

Box leaders are not dumped completely:
.\leaders 40.0
..\hbox(4.77313+0.14581)x15.0, glue set 9.76852fil
...\tenrm a
...\glue 0.0 plus 1.0fil

is the dump for
\leaders\hbox to 15pt{\tenrm a\hfil}\hskip 40pt

Preceding or trailing glue around the leader boxes is also not indicated.

34.3 Global statistics
The parameter \tracingstats can be used to force TEX to report at the end

of the job the global use of resources. Some production versions of TEX may not
have this option.

As an example, here are the statistics for this book:
Here is how much of TeX's memory you used:

String memory (bounded by ‘pool size’):
877 strings out of 4649
9928 string characters out of 61781

Main memory, control sequences, font memory:
53071 words of memory out of 262141
2528 multiletter control sequences out of 9500
20137 words of font info for 70 fonts,

out of 72000 for 255

Hyphenation:
14 hyphenation exceptions out of 607

Stacks: input, nest, parameter, buffer, and save stack respectively,
17i,6n,19p,245b,422s stack positions out of
300i,40n,60p,3000b,4000s

第 35 章 Errors, Catastrophes, and
Help

When TEX is running, various errors can occur. This chapter treats how
errors in the input are displayed, and what sort of overflow of internal data
structures of TEX can occur.

\errorcontextlines (TEX3 only) Number of additional context lines shown in
error messages.

\errmessage Report an error, giving the parameter of this command as
message.

\errhelp Tokens that will be displayed if the user asks further help after an
\errmessage.

35.1 Error messages

When TEX is running in \errorstopmode (which it usually is; see Chap-
ter 32 for the other running modes), errors occurring are reported on the user
terminal, and TEX asks the user for further instructions. Errors can occur ei-
ther because of some internal condition of TEX, or because a macro has issued
an \errmessage command.

If an error occurs TEX shows the input line on which the error occurred.
If the offending command was not on that line but, for instance, in a macro
that was called – possibly indirectly – from that line, the line of that command
is also shown. If the offending command was indirectly called, an additional
\errorcontextlines number of lines is shown with the preceding macro calls.

A value of \errorcontextlines = 0 causes ... to be printed as the sole
indication that there is a context. Negative values inhibit even this.

For each macro in the sequence that leads to the offending command, TEX

297

298 第 35 章 Errors, Catastrophes, and Help

attempts to display some preceding and some following tokens. First one line
is displayed ending with the – indirectly – offending command; then, one line
lower some following tokens are given.

例子：

This paragraph ends \vship1cm with a skip.

gives

! Undefined control sequence.
l.1 This paragraph ends \vship

1cm with a skip.

If TEX is not running in some non-stop mode, the user is given the chance
to do some error patching, or to ask for further information. In general the
following options are available:

⟨return⟩ TEX will continue processing. If the error was something innocent
that TEX could either ignore or patch itself, this is the easy way out.

h Give further details about the error. If the error was caused by an \err-
message command, the \errhelp tokens will be displayed here.

i Insert. The user can insert some material. For example, if a control sequence
is misspelled, the correct command can sometimes be inserted, as

i\vskip

for the above example. Also, this is an opportunity for inserting \show com-
mands to inspect TEX’s internal state. However, if TEX is in the middle of
scanning something complicated, such commands will not be executed, or
will even add to the confusion.

s (\scrollmode) Scroll further errors, but display the messages. TEX will patch
any further errors. This is a handy option, for instance if the error occurs in
an alignment, because the number of subsequent errors tends to be rather
large.

r (\nonstopmode) Run without stopping. TEX will never stop for user interac-
tion.

q (\batchmode) Quiet running. TEX will never stop for user interaction, and
does not give any more terminal output.

x Exit. Abort this run of TEX.

e Edit. This option is not available on all TEX system. If it is, the run of TEX is
aborted, and an editor is started, opening with the input file, maybe even
on the offending line.

35.2 Overflow errors 299

35.2 Overflow errors
Harsh reality imposes some restrictions on how elaborate TEX’s workings

can get. Some restrictions are imposed by compile-time constants, and are
therefore fairly loose, but some depend strongly on the actual computer im-
plementation.

Here follows the list of all categories of overflow that prompt TEX to report
‘Capacity exceeded’. Most bounds involved are (determined by) compile-time
constants; their values given here in parentheses are those used in the source
listing of TEX in [25]. Actual values may differ, and probably will. Remember
that TEX was developed in the good old days when even big computers were
fairly small.

35.2.1 Buffer size (500)

Current lines of all files that are open are kept in TEX’s input buffer, as are
control sequence names that are being built with \csname...\endcsname.

35.2.2 Exception dictionary (307)

The maximum number of hyphenation exceptions specified by \hyphenation
must be a prime number. Two arrays with this many halfwords are allocated.

Changing this number makes formats incompatible; that is, TEX can only
use a format that was made by an IniTEX with the same value for this constant.

35.2.3 Font memory (20,000)

Information about fonts is stored in an array of memory words. This is
easily overflowed by preloading too many fonts in IniTEX.

35.2.4 Grouping levels

The number of open groups should be recordable in a quarter word. There
is no compile-time constant corresponding to this.

35.2.5 Hash size (2100)

Maximum number of control sequences. It is suggested that this number
should not exceed 10% of the main memory size. The values in TEX and IniTEX
should agree; also the hash_prime values should agree.

300 第 35 章 Errors, Catastrophes, and Help

This value is rather low; for macro packages that are more elaborate than
plain TEX a value of about 3000 is more realistic.

35.2.6 Number of strings (3000)

The maximum number of strings must be recordable in a half word.

35.2.7 Input stack size (200)

For each input source an item is allocated on the input stack. Typical in-
put sources are input files (but their simultaneous number is more limited; see
below), and token lists such as token variables, macro replacement texts, and
alignment templates. A macro with ‘runaway recursion’ (for example, \def\mac{{\mac}})
will overflow this stack.

TEX performs some optimization here: before the last call in a token list all
token lists ending with this call are cleared. This process is similar to ‘resolving
tail recursion’ (see Chapter 11).

35.2.8 Main memory size (30,000)

Almost all ‘dynamic’ objects of TEX, such as macro definition texts and all
material on the current page, are stored in the main memory array. Formats
may already take 20 000 words of main memory for macro definitions, and com-
plicated pages containing for instance the LATEX picture environment may easily
overflow this array.

TEX’s main memory is divided in words, and a half word is supposed to be
able to address the whole of the memory. Thus on current 32-bit computers the
most common choice is to let the main memory size be at most 64K bytes. A half
word address can then be stored in 16 bits, half a machine word.

However, so-called ‘Big TEX’ implementations exist that have a main mem-
ory larger than 64K words. Most compilers will then allocate 32-bit words for
addressing this memory, even if (say) 18 bits would suffice. Big TEXs therefore
become immediately a lot bigger when they cross the 64K threshold. Thus they
are usually not found on microcomputers, although virtual memory schemes
for these are possible; see for instance [45].

TEX can have a bigger main memory than IniTEX; see Chapter 33 for fur-
ther details.

35.2 Overflow errors 301

35.2.9 Parameter stack size (60)

Macro parameters may contain macro calls with further parameters. The
number of parameters that may occur nested is bounded by the parameter stack
size.

35.2.10 Pattern memory (8000)

Hyphenation patterns are stored in a trie array. The default size of 8000
hyphenation patterns seems sufficient for English or Italian, for example, but
it is not for Dutch or German.

35.2.11 Pattern memory ops per language

The number of hyphenation ops (see the literature about hyphenation: [30]
and appendix H of [25]) should be recordable in a quarter word. There is no
compile-time constant corresponding to this. TEX version 2 had the same upper
bound, but gave no error message in case of overflow. Again, for languages such
as Dutch and German this bound is too low. There are versions of TEX that have
a higher bound here.

35.2.12 Pool size (32,000)

Strings are error messages and control sequence names. They are stored
using one byte per character. TEX has initially about 23 000 characters worth of
strings.

The pool will overflow if a user defines a large number of control sequences
on top of a substantial macro package. However, even if the user does not define
any new commands overflow may occur: crossreferencing schemes also work by
defining control sequences. For large documents a pool size of 40 000 or 60 000

is probably sufficient.

35.2.13 Save size (600)

Quantities that are assigned to inside a group must be restored after the
end of that group. The save stack is where the values to be restored are kept;
the size of the save stack limits the number of values that can be restored.

Alternating global and local assignments to a value will lead to ‘save stack
build-up’: for each local assignment following a global assignment the previous

302 第 35 章 Errors, Catastrophes, and Help

value of the variable is saved. Thus an alternation of such assignments will
lead to an unnecessary proliferation of items on the save stack.

35.2.14 Semantic nest size (40)

Each time TEX switches to a mode nested inside another mode (for instance
when processing an \hbox inside a \vbox) the current state is pushed on the
semantic nest stack. The semantic nest size is the maximum number of levels
that can be pushed.

35.2.15 Text input levels (6)

The number of nested \input files has to be very limited, as the current
lines are all kept in the input buffer.

第 36 章 The Grammar of TEX

Many chapters in this book contain pieces of the grammar that defines the
formal syntax of TEX. In this chapter the structure of the rewriting rules of the
grammar is explained, and some key notions are presented.

In the TEX book a grammar appears in Chapters 24–27. An even more
rigorous grammar of TEX can be found in [1]. The grammar presented in this
book is virtually identical to that of the TEX book.

36.1 Notations

Basic to the grammar are

grammatical terms These are enclosed in angle brackets:

⟨term⟩

control sequences These are given in typewriter type with a backslash for
the escape character:

\command

Lastly there are

keywords Also given in typewriter type

keyword

This is a limited collection of words that have a special meaning for TEX in
certain contexts; see below.

The three elements of the grammar are used in syntax rules:

⟨snark⟩ −→ boojum | ⟨empty⟩

This rule says that the grammatical entity ⟨snark⟩ is either the keyword boojum,
or the grammatical entity ⟨empty⟩.

There are two other notational conventions. The first is that the double
quote is used to indicate hexadecimal (base 16) notation. For instance "ab56

303

304 第 36 章 The Grammar of TEX

stands for 10 × 163 + 11 × 162 + 5 × 161 + 6 × 160. The second convention is
that subscripts are used to denote category codes. Thus a12 denotes an ‘a’ of
category 12.

36.2 Keywords

A keyword is sequence of characters (or character tokens) of any category
code but 13 (active). Unlike the situation in control sequences, TEX does not
distinguish between lowercase and uppercase characters in keywords. Upper-
case characters in keywords are converted to lowercase by adding 32 to them;
the \lccode and \uccode are not used here. Furthermore, any keyword can be
preceded by optional spaces.

Thus both true cm and truecm are legal. By far the strangest example,
however, is provided by the grammar rule

⟨fil unit⟩ −→ fil | ⟨fil unit⟩l

which implies that fil L l is also a legal ⟨fil dimen⟩. Strange errors can ensue
from this; see page 138 for an example.

Here is the full list of all keywords: at, bp, by, cc, cm, dd, depth, em, ex, fil,
height, in, l, minus, mm, mu, pc, plus, pt, scaled, sp, spread, to, true, width.

36.3 Specific grammatical terms

Some grammatical terms appear in a lot of rules. One such term is ⟨optional
spaces⟩. The term optional space is probably clear enough, but here is the for-
mal definition:

⟨optional spaces⟩ −→ ⟨empty⟩ | ⟨space token⟩⟨optional spaces⟩

which amounts to saying that ⟨optional spaces⟩ is zero or more space tokens.

Other terms may not be so immediately obvious. Below are some of them.

36.3.1 ⟨equals⟩

In assignments the equals sign is optional; therefore there is a term

⟨equals⟩ −→ ⟨optional spaces⟩ | ⟨optional spaces⟩=12

in TEX’s grammar.

36.3 Specific grammatical terms 305

36.3.2 ⟨filler⟩, ⟨general text⟩

More obscure than the ⟨optional spaces⟩ is the combination of spaces and
\relax tokens that is allowed in some places, for instance

\setbox0= \relax\box1

The quantity involved is

⟨filler⟩ −→ ⟨optional spaces⟩ | ⟨filler⟩\relax⟨optional spaces⟩

One important occurrence of ⟨filler⟩ is in

⟨general text⟩ −→ ⟨filler⟩{⟨balanced text⟩⟨right brace⟩

A ⟨general text⟩ follows such control sequences as \message, \uppercase, or
\mark. The braces around the ⟨balanced text⟩ are explained in the next point.

36.3.3 {} and ⟨left brace⟩⟨right brace⟩

The TEX grammar uses a perhaps somewhat unfortunate convention for
braces. First of all

{ and }

stand for braces that are either explicit open/close group characters, or control
sequences defined by \let, such as

\let\bgroup={ \let\egroup=}

The grammatical terms

⟨left brace⟩ and ⟨right brace⟩

stand for explicit open/close group characters, that is, characters of categories
1 and 2 respectively.

Various combinations of these two kinds of braces exist. Braces around
boxes can be implicit:

\hbox⟨box specification⟩{⟨horizontal mode material⟩}

Around a macro definition there must be explicit braces:

⟨definition text⟩ −→ ⟨parameter text⟩⟨left brace⟩⟨balanced text⟩⟨right
brace⟩

Finally, the ⟨general text⟩ that was mentioned above has to be explicitly closed,
but it can be implicitly opened:

⟨general text⟩ −→ ⟨filler⟩{⟨balanced text⟩⟨right brace⟩

The closing brace of a ⟨general text⟩ has to be explicit, since a general text is a
token list, which may contain \egroup tokens. TEX performs expansion to find
the opening brace of a ⟨general text⟩.

306 第 36 章 The Grammar of TEX

36.3.4 ⟨math field⟩

In math mode various operations such as subscripting or applying \underline
take an argument that is a ⟨math field⟩: either a single symbol, or a group. Here
is the exact definition.

⟨math field⟩ −→ ⟨math symbol⟩ | ⟨filler⟩{⟨math mode material⟩}
⟨math symbol⟩ −→ ⟨character⟩ | ⟨math character⟩

See page 45 for ⟨character⟩, and page 206 for ⟨math character⟩.

36.4 Differences between TEX versions 2 and 3
In 1989 Knuth released TEX version 3.0, which is the first real change in

TEX since version 2.0, which was released in 1986 (version 0 of TEX was released
in 1982; see [18] for more about the history of TEX). All intermediate versions
were merely bug fixes.

The main difference between versions 2 and 3 lies in the fact that 8-bit
input has become possible. Associated with this, various quantities that used
to be 127 or 128 have been raised to 255 or 256 respectively. Here is a short
list. The full description is in [20].

All ‘codes’ (\catcode, \sfcode, et cetera; see page 48) now apply to 256
character codes instead of 128.

A character with code \endlinechar is appended to the line unless this
parameter is negative or more than 255 (this was 127) (see page 27).

No escape character is output by \write and other commands if \escapechar
is negative or more than 255 (this was 127) (see page 33).

The ^^ replacement mechanism has been extended (see page 30).

Parameters \language, \inputlineno, \errorcontextlines, \lefthyphenmin,
\righthyphenmin, \badness, \holdinginserts, \emergencystretch, and
commands \noboundary, \setlanguage have been added.

The value of \outputpenalty is no longer zero if the page break was not at a
penalty item; instead it is 10 000 (see page 247).

The plain format has also been updated, mostly with default settings for
parameters such as \lefthyphenmin, but also a few macros have been added.

第 37 章 Glossary of TEX Primitives

This chapter gives the list of all primitives of TEX. After each control sequence
the grammatical category of the command or parameter is given, plus a short
description. For some commands the syntax of their use is given.
For parameters the class to which they belong is given. Commands that have
no grammatical category in the TEX book are denoted either ‘⟨expandable
command⟩’ or ‘⟨primitive command⟩’ in this list.
Grammatical terms such as ⟨equals⟩ and ⟨optional space⟩ are explained in
Chapter 36.

\- ⟨horizontal command⟩ Discretionary hyphen; this is equivalent to
\discretionary””{-}{}{}. Can be used to indicate hyphenatable points in a
word. Chapter 19.

\char32 ⟨horizontal command⟩ Control space. Insert the same amount of
space as a space token would if \spacefactor = 1000. Chapter 2,20.

\char47 ⟨primitive command⟩ Italic correction: insert a kern specified by the
preceding character. Each character has an italic correction, possibly zero,
specified in the tfm file. For slanted fonts this compensates for overhang.
Chapter 4.

\above⟨dimen⟩ ⟨generalized fraction command⟩ Fraction with specified bar
width. Chapter 23.

\abovedisplayshortskip ⟨glue parameter⟩ Glue above a display if the line
preceding the display was short. Chapter 24.

\abovedisplayskip ⟨glue parameter⟩ Glue above a display. Chapter 24.

\abovewithdelims⟨delim1⟩⟨delim2⟩⟨dimen⟩ ⟨generalized fraction command⟩
Generalized fraction with delimiters. Chapter 23.

\accent⟨8-bit number⟩⟨optional assignments⟩⟨character⟩ ⟨horizontal
command⟩ Command to place accents on characters.Chapter 3.

\adjdemerits ⟨integer parameter⟩ Penalty for adjacent not visually

307

308 第 37 章 Glossary of TEX Primitives

compatible lines. Default 10 000 in plain TEX. Chapter 19.

\advance⟨numeric variable⟩⟨optional by⟩⟨number⟩ ⟨arithmetic assignment⟩
Arithmetic command to increase or decrease a ⟨numeric variable⟩, that is, a
⟨count variable⟩, ⟨dimen variable⟩, ⟨glue variable⟩, or ⟨muglue variable⟩.
Chapter 7,8.

\afterassignment⟨token⟩ ⟨primitive command⟩ Save the next token for
execution after the next assignment. Only one token can be saved this way.
Chapter 12.

\aftergroup⟨token⟩ ⟨primitive command⟩ Save the next token for insertion
after the current group. Several tokens can be saved this way. Chapter 10.

\atop⟨dimen⟩ ⟨generalized fraction command⟩ Place objects over one another.
Chapter 23.

\atopwithdelims⟨delim1⟩⟨delim2⟩ ⟨generalized fraction command⟩ Place
objects over one another with delimiters. Chapter 23.

\badness ⟨internal integer⟩ (TEX3 only) Badness of the most recently
constructed box. Chapter 5.

\baselineskip ⟨glue parameter⟩ The ‘ideal’ baseline distance between
neighbouring boxes on a vertical list; 12pt in plain TEX. Chapter 15.

\batchmode ⟨interaction mode assignment⟩ TEX patches errors itself and
performs an emergency stop on serious errors such as missing input files, but
no terminal output is generated. Chapter 32.

\begingroup ⟨primitive command⟩ Open a group that must be closed with
\endgroup. Chapter 10.

\belowdisplayshortskip ⟨glue parameter⟩ Glue below a display if the line
preceding the display was short. Chapter 24.

\belowdisplayskip ⟨glue parameter⟩ Glue below a display. Chapter 24.

\binoppenalty ⟨integer parameter⟩ Penalty for breaking after a binary
operator not enclosed in a subformula. Plain TEX default: 700. Chapter 23.

\botmark ⟨expandable command⟩ The last mark on the current page.
Chapter 28.

\box⟨8-bit number⟩ ⟨box⟩ Use a box register, emptying it. Chapter 5.

\boxmaxdepth ⟨dimen parameter⟩Maximum allowed depth of boxes.
Default \maxdimen in plain TEX. Chapter 5.

\brokenpenalty ⟨integer parameter⟩ Additional penalty for breaking a page
after a hyphenated line. Default 100 in plain TEX. Chapter 27.

309

\catcode⟨8-bit number⟩ ⟨internal integer⟩; the control sequence itself is
a ⟨codename⟩. Access category codes. Chapter 2.

\char⟨number⟩ ⟨character⟩ Explicit denotation of a character to be typeset.
Chapter 3.

\chardef⟨control sequence⟩⟨equals⟩⟨number⟩ ⟨shorthand definition⟩ Define a
control sequence to be a synonym for a character code. Chapter 3.

\cleaders ⟨leaders⟩ As \leaders, but with box leaders any excess space is
split into equal glue items before and after the leaders. Chapter 9.

\closein⟨4-bit number⟩ ⟨primitive command⟩ Close an input stream.
Chapter 30.

\closeout⟨4-bit number⟩ ⟨primitive command⟩ Close an output stream.
Chapter 30.

\clubpenalty ⟨integer parameter⟩ Additional penalty for breaking a page
after the first line of a paragraph. Default 150 in plain TEX. Chapter 27.

\copy⟨8-bit number⟩ ⟨box⟩ Use a box register and retain the contents.
Chapter 5.

\count⟨8-bit number⟩ ⟨internal integer⟩; the control sequence itself is
a ⟨register prefix⟩. Access count registers. Chapter 7.

\countdef⟨control sequence⟩⟨equals⟩⟨8-bit number⟩ ⟨shorthand definition⟩;
the control sequence itself is a ⟨registerdef⟩. Define a control sequence to be a
synonym for a \count register. Chapter 7.

\cr ⟨primitive command⟩ Terminate an alignment line. Chapter 25.

\crcr ⟨primitive command⟩ Terminate an alignment line if it has not already
been terminated by \cr. Chapter 25.

\csname ⟨expandable command⟩ Start forming the name of a control
sequence. Has to be balanced with \endcsname. Chapter 11.

\day ⟨integer parameter⟩ The day of the current job. Chapter 33.

\deadcycles ⟨special integer⟩ Counter that keeps track of how many times
the output routine has been called without a \shipout taking place. If this
number reaches \maxdeadcycles TEX gives an error message. Plain TEX
default: 25. Chapter 28.

\def ⟨def⟩ Start a macro definition. Chapter 11.

\defaulthyphenchar ⟨integer parameter⟩ Value of \hyphenchar when a font is
loaded. Default value in plain TEX is `\-. Chapter 4,19.

\defaultskewchar ⟨integer parameter⟩ Value of \skewchar when a font is

310 第 37 章 Glossary of TEX Primitives

loaded. Default value in plain TEX is -1. Chapter 21.

\delcode⟨8-bit number⟩ ⟨internal integer⟩; the control sequence itself is
a ⟨codename⟩. Access the code specifying how a character should be used as
delimiter after \left or \right. Chapter 21.

\delimiter⟨27-bit number⟩ ⟨math character⟩ Explicit denotation of a
delimiter. Chapter 21.

\delimiterfactor ⟨integer parameter⟩ 1000 times the part of a delimited
formula that should be covered by a delimiter. Plain TEX default: 901.
Chapter 21.

\delimitershortfall ⟨integer parameter⟩ Size of the part of a delimited
formula that is allowed to go uncovered by a delimiter. Plain TEX default: 5pt.
Chapter 21.

\dimen⟨8-bit number⟩ ⟨internal dimen⟩; the control sequence itself is
a ⟨register prefix⟩. Access dimen registers. Chapter 8.

\dimendef⟨control sequence⟩⟨equals⟩⟨8-bit number⟩ ⟨shorthand definition⟩;
the control sequence itself is a ⟨registerdef⟩. Define a control sequence to be a
synonym for a \dimen register. Chapter 8.

\discretionary{pre-break}{post-break}{no-break} ⟨horizontal command⟩
Specify the way a character sequence is split up at a line break. Chapter 19.

\displayindent ⟨dimen parameter⟩ Distance by which the box, in which the
display is centred, is indented owing to hanging indentation. This value is set
automatically for each display. Chapter 24.

\displaylimits ⟨primitive command⟩ Restore default placement for limits.
Chapter 23.

\displaystyle ⟨primitive command⟩ Select the display style of math
typesetting. Chapter 23.

\displaywidowpenalty ⟨integer parameter⟩ Additional penalty for breaking a
page before the last line above a display formula. Default 50 in plain TEX.
Chapter 27.

\displaywidth ⟨dimen parameter⟩Width of the box in which the display is
centred. This value is set automatically for each display. Chapter 24.

\divide⟨numeric variable⟩⟨optional by⟩⟨number⟩ ⟨arithmetic assignment⟩
Arithmetic command to divide a ⟨numeric variable⟩ (see \advance). Chapter 7.

\doublehyphendemerits ⟨integer parameter⟩ Penalty for consecutive lines
ending with a hyphen. Default 10 000 in plain TEX. Chapter 19.

311

\dp⟨8-bit number⟩ ⟨internal dimen⟩; the control sequence itself is a ⟨box
dimension⟩. Depth of the box in a box register. Chapter 5.

\dump ⟨vertical command⟩ Dump a format file; possible only in IniTEX, not
allowed inside a group.
Chapter 33.

\edef ⟨def⟩ Start a macro definition; the replacement text is expanded at
definition time. Chapter 11.

\else ⟨expandable command⟩ Select ⟨false text⟩ of a conditional or default
case of \ifcase. Chapter 13.

\emergencystretch ⟨dimen parameter⟩ (TEX3 only) Assumed extra
stretchability in lines of a paragraph in third pass of the line-breaking
algorithm. Chapter 19.

\end ⟨vertical command⟩ End this run. Chapter 32.

\endcsname ⟨expandable command⟩ Delimit the name of a control sequence
that was begun with \csname. Chapter 11.

\endgroup ⟨primitive command⟩ End a group that was opened with
\begingroup. Chapter 10.

\endinput ⟨expandable command⟩ Terminate inputting the current file after
the current line. Chapter 30.

\endlinechar ⟨integer parameter⟩ The character code of the end-of-line
character appended to input lines. IniTEX default: 13. Chapter 2.

\eqno⟨math mode material⟩$$ ⟨eqno⟩ Place a right equation number in a
display formula. Chapter 24.

\errhelp ⟨token parameter⟩ Tokens that will be displayed if the user asks for
help after an \errmessage. Chapter 35.

\errmessage⟨general text⟩ ⟨primitive command⟩ Report an error and give
the user opportunity to act. Chapter 35.

\errorcontextlines ⟨integer parameter⟩ (TEX3 only) Number of additional
context lines shown in error messages. Chapter 35.

\errorstopmode ⟨interaction mode assignment⟩ Ask for user input on the
occurrence of an error. Chapter 32.

\escapechar ⟨integer parameter⟩ Number of the character that is used when
control sequences are being converted into character tokens. IniTEX
default: 92. Chapter 3.

\everycr ⟨token parameter⟩ Token list inserted after every \cr or

312 第 37 章 Glossary of TEX Primitives

non-redundant \crcr. Chapter 25.

\everydisplay ⟨token parameter⟩ Token list inserted at the start of a display.
Chapter 24.

\everyhbox ⟨token parameter⟩ Token list inserted at the start of a horizontal
box. Chapter 5.

\everyjob ⟨token parameter⟩ Token list inserted at the start of each job.
Chapter 32.

\everymath ⟨token parameter⟩ Token list inserted at the start of non-display
math. Chapter 23.

\everypar ⟨token parameter⟩ Token list inserted in front of paragraph text.
Chapter 16.

\everyvbox ⟨token parameter⟩ Token list inserted at the start of a vertical
box. Chapter 5.

\exhyphenpenalty ⟨integer parameter⟩ Penalty for breaking a horizontal line
at a discretionary in the special case where the prebreak text is empty.
Default 50 in plain TEX. Chapter 19.

\expandafter ⟨expandable command⟩ Take the next two tokens and place the
expansion of the second after the first. Chapter 12.

\fam ⟨integer parameter⟩ The number of the current font family. Chapter 22.

\fi ⟨expandable command⟩ Closing delimiter for all conditionals. Chapter 13.

\finalhyphendemerits ⟨integer parameter⟩ Penalty added when the
penultimate line of a paragraph ends with a hyphen. Plain TEX default 5000.
Chapter 19.

\firstmark ⟨expandable command⟩ The first mark on the current page.
Chapter 28.

\floatingpenalty ⟨integer parameter⟩ Penalty amount added to
\insertpenalties when an insertion is split. Chapter 29.

\font⟨control sequence⟩⟨equals⟩⟨file name⟩⟨at clause⟩ ⟨simple
assignment⟩ Associate a control sequence with a tfm file. When used on its
own, this control sequence is a ⟨font⟩, denoting the current font. Chapter 4.

\fontdimen⟨number⟩⟨font⟩ ⟨internal dimen⟩ Access various parameters of
fonts. Chapter 4.

\fontname⟨font⟩ ⟨primitive command⟩ The external name of a font.
Chapter 4.

\futurelet⟨control sequence⟩⟨token1⟩⟨token2⟩ ⟨let assignment⟩ Assign the

313

meaning of ⟨token2⟩ to the ⟨control sequence⟩. Chapter 11.

\gdef ⟨def⟩ Synonym for \global\def. Chapter 11.

\global ⟨prefix⟩Make the next definition, arithmetic statement, or
assignment global. Chapter 10,11.

\globaldefs ⟨integer parameter⟩ Override \global specifications: a positive
value of this parameter makes all assignments global, a negative value makes
them local. Chapter 10.

\halign⟨box specification⟩{⟨alignment material⟩} ⟨vertical command⟩
Horizontal alignment. Display alignment:

$$\halign⟨box specification⟩{...}⟨optional assignments⟩$$

Chapter 25.

\hangafter ⟨integer parameter⟩ If positive, this denotes the number of lines
before indenting starts; if negative, its absolute value is the number of
indented lines starting with the first line of the paragraph. The default value
of 1 is restored after every paragraph. Chapter 18.

\hangindent ⟨dimen parameter⟩ If positive, this indicates indentation from
the left margin; if negative, this is the negative of the indentation from the
right margin. The default value of 0pt is restored after every paragraph.
Chapter 18.

\hbadness ⟨integer parameter⟩ Threshold below which TEX does not report an
underfull or overfull horizontal box. Plain TEX default: 1000. Chapter 5.

\hbox⟨box specification⟩{⟨horizontal material⟩} ⟨box⟩ Construct a
horizontal box. Chapter 5.

\hfil ⟨horizontal command⟩ Horizontal skip equivalent to
\hskip 0cm plus 1fil. Chapter 8.

\hfill ⟨horizontal command⟩ Horizontal skip equivalent to
\hskip 0cm plus 1fill. Chapter 8.

\hfilneg ⟨horizontal command⟩ Horizontal skip equivalent to
\hskip 0cm minus 1fil. Chapter 8.

\hfuzz ⟨dimen parameter⟩ Excess size that TEX tolerates before it considers a
horizontal box overfull. Plain TEX default: 0.1pt. Chapter 5.

\hoffset ⟨dimen parameter⟩ Distance by which the page is shifted to the
right of the reference point which is at one inch from the left margin.
Chapter 26.

\holdinginserts ⟨integer parameter⟩ (only TEX3) If this is positive,

314 第 37 章 Glossary of TEX Primitives

insertions are not placed in their boxes when the \output tokens are inserted.
Chapter 29.

\hrule ⟨vertical command⟩ Rule that spreads in horizontal direction.
Chapter 9.

\hsize ⟨dimen parameter⟩ Line width used for text typesetting inside a
vertical box. Chapter 5,18.

\hskip⟨glue⟩ ⟨horizontal command⟩ Insert in horizontal mode a glue item.
Chapter 8.

\hss ⟨horizontal command⟩ Horizontal skip equivalent to
\hskip 0cm plus 1fil minus 1fil. Chapter 8.

\ht⟨8-bit number⟩ ⟨internal dimen⟩; the control sequence itself is a ⟨box
dimension⟩. Height of the box in a box register. Chapter 5.

\hyphenation⟨general text⟩ ⟨hyphenation assignment⟩ Define hyphenation
exceptions for the current value of \language. Chapter 19.

\hyphenchar⟨font⟩ ⟨internal integer⟩ Number of the character behind which a
\discretionary{}{}{} is inserted. Chapter 4,19.

\hyphenpenalty ⟨integer parameter⟩ Penalty associated with break at a
discretionary in the general case. Default 50 in plain TEX. Chapter 19.

\if⟨token1⟩⟨token2⟩ ⟨expandable command⟩ Test equality of character codes.
Chapter 13.

\ifcase⟨number⟩⟨case0⟩\or...\or⟨casen⟩\else⟨other cases⟩\fi ⟨expandable
command⟩ Enumerated case statement. Chapter 13.

\ifcat⟨token1⟩⟨token2⟩ ⟨expandable command⟩ Test whether two characters
have the same category code. Chapter 13.

\ifdim⟨dimen1⟩⟨relation⟩⟨dimen2⟩ ⟨expandable command⟩ Compare two
dimensions. Chapter 13.

\ifeof⟨4-bit number⟩ ⟨expandable command⟩ Test whether a file has been
fully read, or does not exist. Chapter 30.

\iffalse ⟨expandable command⟩ This test is always false. Chapter 13.

\ifhbox⟨8-bit number⟩ ⟨expandable command⟩ Test whether a box register
contains a horizontal box. Chapter 5.

\ifhmode ⟨expandable command⟩ Test whether the current mode is (possibly
restricted) horizontal mode. Chapter 13.

\ifinner ⟨expandable command⟩ Test whether the current mode is an
internal mode. Chapter 13.

315

\ifmmode ⟨expandable command⟩ Test whether the current mode is (possibly
display) math mode. Chapter 13.

\ifnum⟨number1⟩⟨relation⟩⟨number2⟩ ⟨expandable command⟩ Test relations
between numbers. Chapter 13.

\ifodd⟨number⟩ ⟨expandable command⟩ Test whether a number is odd.
Chapter 13.

\iftrue ⟨expandable command⟩ This test is always true. Chapter 13.

\ifvbox⟨8-bit number⟩ ⟨expandable command⟩ Test whether a box register
contains a vertical box. Chapter 5.

\ifvmode ⟨expandable command⟩ Test whether the current mode is (possibly
internal) vertical mode. Chapter 13.

\ifvoid⟨8-bit number⟩ ⟨expandable command⟩ Test whether a box register is
empty. Chapter 13,5.

\ifx⟨token1⟩⟨token2⟩ ⟨expandable command⟩ Test equality of macro
expansion, or equality of character code and category code. Chapter 13.

\ignorespaces ⟨primitive command⟩ Expands following tokens until
something other than a ⟨space token⟩ is found. Chapter 2.

\immediate ⟨primitive command⟩ Prefix to have output operations executed
right away. Chapter 30.

\indent ⟨primitive command⟩ Switch to horizontal mode and insert box with
width \parindent. This command is automatically inserted before a
⟨horizontal command⟩ in vertical mode. Chapter 16.

\input⟨file name⟩ ⟨expandable command⟩ Read a specified file as TEX input.
Chapter 30.

\inputlineno ⟨internal integer⟩ (TEX3 only) Number of the current input line.
Chapter 30.

\insert⟨8-bit number⟩{⟨vertical mode material⟩} ⟨primitive command⟩
Start an insertion item. Chapter 29.

\insertpenalties ⟨special integer⟩ Total of penalties for split insertions.
Inside the output routine the number of held-over insertions. Chapter 29.

\interlinepenalty ⟨integer parameter⟩ Penalty for breaking a page between
lines of a paragraph. Default 0 in plain TEX. Chapter 27.

\jobname ⟨expandable command⟩ Name of the main TEX file being processed.
Chapter 32.

\kern⟨dimen⟩ ⟨kern⟩ Add a kern item of the specified ⟨dimen⟩ to the list; this

316 第 37 章 Glossary of TEX Primitives

can be used both in horizontal and vertical mode. Chapter 8.

\language ⟨integer parameter⟩ (TEX3 only) Choose a set of hyphenation
patterns and exceptions. Chapter 19.

\lastbox ⟨box⟩ Register containing the last element added to the current list,
if this was a box. Chapter 5.

\lastkern ⟨internal dimen⟩ If the last item on the list was a kern, the size of
this. Chapter 8.

\lastpenalty ⟨internal integer⟩ If the last item on the list was a penalty, the
value of this. Chapter 27.

\lastskip ⟨internal glue⟩ or ⟨internal muglue⟩. If the last item on the list was
a skip, the size of this. Chapter 8.

\lccode⟨8-bit number⟩ ⟨internal integer⟩; the control sequence itself is
a ⟨codename⟩. Access the character code that is the lowercase variant of a
given code. Chapter 3.

\leaders⟨box or rule⟩⟨vertical/horizontal/mathematical skip⟩ ⟨leaders⟩
Fill a specified amount of space with a rule or copies of box. Chapter 9.

\left ⟨primitive command⟩ Use the following character as an open delimiter.
Chapter 21.

\lefthyphenmin ⟨integer parameter⟩ (TEX3 only) Minimum number of
characters before a hyphenation. Chapter 19.

\leftskip ⟨glue parameter⟩ Glue that is placed to the left of all lines.
Chapter 18.

\leqno⟨math mode material⟩$$ ⟨eqno⟩ Place a left equation number in a
display formula. Chapter 24.

\let⟨control sequence⟩⟨equals⟩⟨token⟩ ⟨let assignment⟩ Define a control
sequence to a token, assign its meaning if the token is a command or macro.
Chapter 11.

\limits ⟨primitive command⟩ Place limits over and under a large operator.
This is the default position in display style. Chapter 23.

\linepenalty ⟨integer parameter⟩ Penalty value associated with each line
break. Default 10 in plain TEX. Chapter 19.

\lineskip ⟨glue parameter⟩ Glue added if distance between bottom and top of
neighbouring boxes is less than \lineskiplimit. Default 1pt in plain TEX.
Chapter 15.

\lineskiplimit ⟨dimen parameter⟩ Distance to be maintained between the

317

bottom and top of neighbouring boxes on a vertical list. Default 0pt in plain
TEX. Chapter 15.

\long ⟨prefix⟩ Indicate that the arguments of the macro to be defined are
allowed to contain \par tokens. Chapter 11.

\looseness ⟨integer parameter⟩ Number of lines by which this paragraph has
to be made longer (or, if negative, shorter) than it would be ideally.
Chapter 19.

\lower⟨dimen⟩⟨box⟩ ⟨primitive command⟩ Adjust vertical positioning of a box
in horizontal mode. Chapter 5.

\lowercase⟨general text⟩ ⟨primitive command⟩ Convert the argument to its
lowercase form. Chapter 3.

\mag ⟨integer parameter⟩ 1000 times the magnification of the document.
Default 1000 in IniTEX. Chapter 33.

\mark⟨general text⟩ ⟨primitive command⟩ Specify a mark text. Chapter 28.

\mathaccent⟨15-bit number⟩⟨math field⟩ ⟨primitive command⟩ Place an
accent in math mode. Chapter 21,23.

\mathbin⟨math field⟩ ⟨math atom⟩ Let the following ⟨math field⟩ function as
a binary operation. Chapter 23.

\mathchar⟨15-bit number⟩ ⟨primitive command⟩ Explicit denotation of a
mathematical character. Chapter 21.

\mathchardef⟨control sequence⟩⟨equals⟩⟨15-bit number⟩ ⟨shorthand
definition⟩ Define a control sequence to be a synonym for a math character
code. Chapter 21.

\mathchoice{D}{T}{S}{SS} ⟨primitive command⟩ Give four variants of a
formula for the four styles of math typesetting. Chapter 23.

\mathclose⟨math field⟩ ⟨math atom⟩ Let the following ⟨math field⟩ function
as a closing symbol. Chapter 23.

\mathcode⟨8-bit number⟩ ⟨internal integer⟩; the control sequence itself is
a ⟨codename⟩. Code of a character determining its treatment in math mode.
Chapter 21.

\mathinner⟨math field⟩ ⟨math atom⟩ Let the following ⟨math field⟩ function
as an inner formula. Chapter 23.

\mathop⟨math field⟩ ⟨math atom⟩ Let the following ⟨math field⟩ function as a
large operator. Chapter 23.

\mathopen⟨math field⟩ ⟨math atom⟩ Let the following ⟨math field⟩ function

318 第 37 章 Glossary of TEX Primitives

as an opening symbol. Chapter 23.

\mathord⟨math field⟩ ⟨math atom⟩ Let the following ⟨math field⟩ function as
an ordinary object. Chapter 23.

\mathpunct⟨math field⟩ ⟨math atom⟩ Let the following ⟨math field⟩ function
as a punctuation symbol. Chapter 23.

\mathrel⟨math field⟩ ⟨math atom⟩ Let the following ⟨math field⟩ function as
a relation. Chapter 23.

\mathsurround ⟨dimen parameter⟩ Kern amount placed before and after
in-line formulas. Chapter 23.

\maxdeadcycles ⟨integer parameter⟩ The maximum number of times that the
output routine is allowed to be called without a \shipout occurring. IniTEX
default: 25. Chapter 28.

\maxdepth ⟨dimen parameter⟩Maximum depth of the page box. Default 4pt
in plain TEX. Chapter 26.

\meaning ⟨expandable command⟩ Give the meaning of a control sequence as a
string of characters. Chapter 34.

\medmuskip ⟨muglue parameter⟩Medium amount of mu glue. Default value
in plain TEX: 4mu plus 2mu minus 4mu Chapter 23.

\message⟨general text⟩ ⟨primitive command⟩Write a message to the
terminal. Chapter 30.

\mkern ⟨primitive command⟩ Insert a kern measured in mu units. Chapter 23.

\month ⟨integer parameter⟩ The month of the current job. Chapter 33.

\moveleft⟨dimen⟩⟨box⟩ ⟨primitive command⟩ Adjust horizontal positioning of
a box in vertical mode. Chapter 5.

\moveright⟨dimen⟩⟨box⟩ ⟨primitive command⟩ Adjust horizontal positioning of
a box in vertical mode. Chapter 5.

\mskip ⟨mathematical skip⟩ Insert glue measured in mu units. Chapter 23.

\multiply⟨numeric variable⟩⟨optional by⟩⟨number⟩ ⟨arithmetic assignment⟩
Arithmetic command to multiply a ⟨numeric variable⟩ (see \advance).
Chapter 7.

\muskip⟨8-bit number⟩ ⟨internal muglue⟩; the control sequence itself is
a ⟨register prefix⟩. Access skips measured in mu units. Chapter 23.

\muskipdef⟨control sequence⟩⟨equals⟩⟨8-bit number⟩ ⟨shorthand
definition⟩; the control sequence itself is a ⟨registerdef⟩. Define a control
sequence to be a synonym for a \muskip register. Chapter 23.

319

\newlinechar ⟨integer parameter⟩ Number of the character that triggers a
new line in \write and \message statements. Plain TEX default −1; LATEX
default 10. Chapter 30.

\noalign⟨filler⟩{⟨vertical (horizontal) mode material⟩} ⟨primitive
command⟩ Specify vertical (horizontal) material to be placed in between rows
(columns) of an \halign (\valign). Chapter 25.

\noboundary ⟨horizontal command⟩ (TEX3 only) Omit implicit boundary
character. Chapter 4.

\noexpand⟨token⟩ ⟨expandable command⟩ Do not expand the next token.
Chapter 12.

\noindent ⟨primitive command⟩ Switch to horizontal mode with an empty
horizontal list. Chapter 16.

\nolimits ⟨primitive command⟩ Place limits of a large operator as subscript
and superscript expressions. This is the default position in text style.
Chapter 23.

\nonscript ⟨primitive command⟩ Cancel the next glue item if it occurs in
scriptstyle or scriptscriptstyle. Chapter 23.

\nonstopmode ⟨interaction mode assignment⟩ TEX fixes errors as best it can,
and performs an emergency stop when user interaction is needed. Chapter 32.

\nulldelimiterspace ⟨dimen parameter⟩Width taken for empty delimiters.
Default 1.2pt in plain TEX. Chapter 21.

\nullfont ⟨fontdef token⟩ Name of an empty font that TEX uses in
emergencies. Chapter 4.

\number⟨number⟩ ⟨expandable command⟩ Convert a ⟨number⟩ to decimal
representation. Chapter 7.

\omit ⟨primitive command⟩ Omit the template for one alignment entry.
Chapter 25.

\openin⟨4-bit number⟩⟨equals⟩⟨filename⟩ ⟨primitive command⟩ Open a
stream for input. Chapter 30.

\openout⟨4-bit number⟩⟨equals⟩⟨filename⟩ ⟨primitive command⟩ Open a
stream for output. Chapter 30.

\or ⟨primitive command⟩ Separator for entries of an \ifcase. Chapter 13.

\outer ⟨prefix⟩ Indicate that the macro being defined should occur on the
outer level only. Chapter 11.

\output ⟨token parameter⟩ Token list with instructions for shipping out

320 第 37 章 Glossary of TEX Primitives

pages. Chapter 28.

\outputpenalty ⟨integer parameter⟩ Value of the penalty at the current page
break, or 10 000 if the break was not at a penalty. Chapter 27,28.

\over ⟨generalized fraction command⟩ Fraction. Chapter 23.

\overfullrule ⟨dimen parameter⟩Width of the rule that is printed to
indicate overfull horizontal boxes. Plain TEX default: 5pt. Chapter 5.

\overline⟨math field⟩ ⟨math atom⟩ Overline the following ⟨math field⟩.
Chapter 23.

\overwithdelims⟨delim1⟩⟨delim2⟩ ⟨generalized fraction command⟩ Fraction
with delimiters. Chapter 23.

\pagedepth ⟨special dimen⟩ Depth of the current page. Chapter 27.

\pagefilllstretch ⟨special dimen⟩ Accumulated third-order stretch of the
current page. Chapter 27.

\pagefillstretch ⟨special dimen⟩ Accumulated second-order stretch of the
current page. Chapter 27.

\pagefilstretch ⟨special dimen⟩ Accumulated first-order stretch of the
current page. Chapter 27.

\pagegoal ⟨special dimen⟩ Goal height of the page box. This starts at \vsize,
and is diminished by heights of insertion items. Chapter 27.

\pageshrink ⟨special dimen⟩ Accumulated shrink of the current page.
Chapter 27.

\pagestretch ⟨special dimen⟩ Accumulated zeroth-order stretch of the
current page. Chapter 27.

\pagetotal ⟨special dimen⟩ Accumulated natural height of the current page.
Chapter 27.

\par ⟨primitive command⟩ Close off a paragraph and go into vertical mode.
Chapter 17.

\parfillskip ⟨glue parameter⟩ Glue that is placed between the last element
of the paragraph and the line end. Plain TEX default: 0pt plus 1fil.
Chapter 17.

\parindent ⟨dimen parameter⟩ Size of the indentation box added in front of a
paragraph. Chapter 16,18.

\parshape ⟨internal integer⟩ Command for general paragraph shapes:

\parshape⟨equals⟩n i1 ℓ1 . . . in ℓn

specifies a number of lines n, and n pairs of an indentation and line length.

321

Chapter 18.

\parskip ⟨glue parameter⟩ Amount of glue added to vertical list when a
paragraph starts; default value 0pt plus 1pt in plain TEX. Chapter 16.

\patterns⟨general text⟩ ⟨hyphenation assignment⟩ Define a list of
hyphenation patterns for the current value of \language; allowed only in
IniTEX. Chapter 19.

\pausing ⟨integer parameter⟩ Specify that TEX should pause after each line
that is read from a file. Chapter 32.

\penalty ⟨primitive command⟩ Specify desirability of not breaking at this
point. Chapter 19,27.

\postdisplaypenalty ⟨integer parameter⟩ Penalty placed in the vertical list
below a display. Chapter 24.

\predisplaypenalty ⟨integer parameter⟩ Penalty placed in the vertical list
above a display. Plain TEX default: 10 000. Chapter 24.

\predisplaysize ⟨dimen parameter⟩ Effective width of the line preceding the
display. Chapter 24.

\pretolerance ⟨integer parameter⟩ Tolerance value for a paragraph that uses
no hyphenation. Default 100 in plain TEX. Chapter 19.

\prevdepth ⟨special dimen⟩ Depth of the last box added to a vertical list as it
is perceived by TEX. Chapter 15.

\prevgraf ⟨special integer⟩ The number of lines in the paragraph last added
to the vertical list. Chapter 19.

\radical⟨24-bit number⟩ ⟨primitive command⟩ Command for setting things
such as root signs. Chapter 21.

\raise⟨dimen⟩⟨box⟩ ⟨primitive command⟩ Adjust vertical positioning of a box
in horizontal mode. Chapter 5.

\read⟨number⟩to⟨control sequence⟩ ⟨simple assignment⟩ Read a line from a
stream into a control sequence. Chapter 30.

\relax ⟨primitive command⟩ Do nothing. Chapter 12.

\relpenalty ⟨integer parameter⟩ Penalty for breaking after a binary relation,
not enclosed in a subformula. Plain TEX default: 500. Chapter 23.

\right ⟨primitive command⟩ Use the following character as a closing
delimiter. Chapter 21.

\righthyphenmin ⟨integer parameter⟩ (TEX3 only) Minimum number of
characters after a hyphenation. Chapter 19.

322 第 37 章 Glossary of TEX Primitives

\rightskip ⟨glue parameter⟩ Glue that is placed to the right of all lines.
Chapter 18.

\romannumeral⟨number⟩ ⟨expandable command⟩ Convert a positive ⟨number⟩
to lowercase roman representation. Chapter 7.

\scriptfont⟨4-bit number⟩ ⟨family member⟩; the control sequence itself is
a ⟨font range⟩. Access the scriptfont of a family. Chapter 22.

\scriptscriptfont⟨4-bit number⟩ ⟨family member⟩; the control sequence
itself is a ⟨font range⟩. Access the scriptscriptfont of a family. Chapter 22.

\scriptscriptstyle ⟨primitive command⟩ Select the scriptscript style of
math typesetting. Chapter 23.

\scriptspace ⟨dimen parameter⟩ Extra space after subscripts and
superscripts. Default .5pt in plain TEX. Chapter 23.

\scriptstyle ⟨primitive command⟩ Select the script style of math
typesetting. Chapter 23.

\scrollmode ⟨interaction mode assignment⟩ TEX patches errors itself, but will
ask the user for missing files. Chapter 32.

\setbox⟨8-bit number⟩⟨equals⟩⟨box⟩ ⟨simple assignment⟩ Assign a box to a
box register. Chapter 5.

\setlanguage⟨number⟩ ⟨primitive command⟩ (TEX3 only) Insert a whatsit
resetting the current language to the ⟨number⟩ specified. Chapter 19.

\sfcode⟨8-bit number⟩ ⟨internal integer⟩; the control sequence itself is
a ⟨codename⟩. Access the value of the \spacefactor associated with a
character. Chapter 20.

\shipout⟨box⟩ ⟨primitive command⟩ Ship a box to the dvi file. Chapter 28.

\show⟨token⟩ ⟨primitive command⟩ Display the meaning of a token on the
screen. Chapter 34.

\showbox⟨8-bit number⟩ ⟨primitive command⟩Write the contents of a box to
the log file. Chapter 34.

\showboxbreadth ⟨integer parameter⟩ Number of successive elements that
are shown when \tracingoutput is positive, each time a level is visited. Plain
TEX default: 5. Chapter 34.

\showboxdepth ⟨integer parameter⟩ The number of levels that are shown
when \tracingoutput is positive. Plain TEX default: 3. Chapter 34.

\showlists ⟨primitive command⟩Write to the log file the contents of the
partial lists currently built in all modes. Chapter 6.

323

\showthe⟨internal quantity⟩ ⟨primitive command⟩ Display on the terminal
the result of prefixing a token with \the. Chapter 34.

\skewchar⟨font⟩ ⟨internal integer⟩ Font position of an after-placed accent.
Chapter 21.

\skip⟨8-bit number⟩ ⟨internal glue⟩; the control sequence itself is a ⟨register
prefix⟩. Access skip registers Chapter 8.

\skipdef⟨control sequence⟩⟨equals⟩⟨8-bit number⟩ ⟨shorthand definition⟩;
the control sequence itself is a ⟨registerdef⟩. Define a control sequence to be a
synonym for a \skip register. Chapter 8.

\spacefactor ⟨special integer⟩ 1000 times the ratio by which the stretch
component of the interword glue should be multiplied. Chapter 20.

\spaceskip ⟨glue parameter⟩ Interword glue if non-zero. Chapter 20.

\span ⟨primitive command⟩ Join two adjacent alignment entries, or (in
preamble) expand the next token. Chapter 25.

\special⟨general text⟩ ⟨primitive command⟩Write a token list to the dvi
file. Chapter 33.

\splitbotmark ⟨expandable command⟩ The last mark on a split-off page.
Chapter 28.

\splitfirstmark ⟨expandable command⟩ The first mark on a split-off page.
Chapter 28.

\splitmaxdepth ⟨dimen parameter⟩Maximum depth of a box split off by a
\vsplit operation. Default 4pt in plain TEX. Chapter 5,26.

\splittopskip ⟨glue parameter⟩Minimum distance between the top of what
remains after a \vsplit operation, and the first item in that box. Default 10pt
in plain TEX. Chapter 27.

\string⟨token⟩ ⟨expandable command⟩ Convert a token to a string of one or
more characters. Chapter 3.

\tabskip ⟨glue parameter⟩ Amount of glue in between columns (rows) of an
\halign (\valign). Chapter 25.

\textfont⟨4-bit number⟩ ⟨family member⟩; the control sequence itself is
a ⟨font range⟩. Access the textfont of a family. Chapter 22.

\textstyle ⟨primitive command⟩ Select the text style of math typesetting.
Chapter 23.

\the⟨internal quantity⟩ ⟨primitive command⟩ Expand the value of various
quantities in TEX into a string of (character) tokens. Chapter 12.

324 第 37 章 Glossary of TEX Primitives

\thickmuskip ⟨muglue parameter⟩ Large amount of mu glue. Default value in
plain TEX: 5mu plus 5mu. Chapter 23.

\thinmuskip ⟨muglue parameter⟩ Small amount of mu glue. Default value in
plain TEX: 3mu. Chapter 23.

\time ⟨integer parameter⟩ Number of minutes after midnight that the
current job started. Chapter 33.

\toks⟨8-bit number⟩ ⟨register prefix⟩ Access a token list register. Chapter 14.

\toksdef⟨control sequence⟩⟨equals⟩⟨8-bit number⟩ ⟨shorthand definition⟩;
the control sequence itself is a ⟨registerdef⟩. Assign a control sequence to
a \toks register. Chapter 14.

\tolerance ⟨integer parameter⟩ Tolerance value for lines in a paragraph that
does use hyphenation. Default 200 in plain TEX, 10 000 in IniTEX. Chapter 19.

\topmark ⟨expandable command⟩ The last mark of the previous page.
Chapter 28.

\topskip ⟨glue parameter⟩Minimum distance between the top of the page
box and the baseline of the first box on the page. Default 10pt in plain TEX.
Chapter 26.

\tracingcommands ⟨integer parameter⟩When this is 1, TEX displays primitive
commands executed; when this is 2 or more the outcome of conditionals is also
recorded. Chapter 34.

\tracinglostchars ⟨integer parameter⟩ If this parameter is positive, TEX
gives diagnostic messages whenever a character is accessed that is not
present in a font. Plain TEX default: 1. Chapter 34.

\tracingmacros ⟨integer parameter⟩ If this is 1, the log file shows expansion
of macros that are performed and the actual values of the arguments; if this is
2 or more ⟨token parameter⟩s such as \output and \everypar are also traced.
Chapter 34.

\tracingonline ⟨integer parameter⟩ If this parameter is positive, TEX will
write trace information also to the terminal. Chapter 34.

\tracingoutput ⟨integer parameter⟩ If this parameter is positive, the log file
shows a dump of boxes that are shipped to the dvi file. Chapter 34.

\tracingpages ⟨integer parameter⟩ If this parameter is positive, TEX
generates a trace of the page-breaking algorithm. Chapter 34.

\tracingparagraphs ⟨integer parameter⟩ If this parameter is positive, TEX
generates a trace of the line-breaking algorithm. Chapter 34.

325

\tracingrestores ⟨integer parameter⟩ If this parameter is positive, TEX will
report all values that are restored when a group level ends. Chapter 34.

\tracingstats ⟨integer parameter⟩ If this parameter is positive, TEX reports
at the end of the job the usage of various internal arrays. Chapter 34.

\uccode⟨8-bit number⟩ ⟨internal integer⟩; the control sequence itself is
a ⟨codename⟩. Access the character code that is the uppercase variant of a
given code. Chapter 3.

\uchyph ⟨integer parameter⟩ Positive if hyphenating words starting with a
capital letter is allowed. Plain TEX default 1. Chapter 19.

\underline⟨math field⟩ ⟨math atom⟩ Underline the following ⟨math field⟩.
Chapter 23.

\unhbox⟨8-bit number⟩ ⟨horizontal command⟩ Unpack a box register
containing a horizontal box, appending the contents to the list, and emptying
the register. Chapter 5.

\unhcopy⟨8-bit number⟩ ⟨horizontal command⟩ The same as \unhbox, but do
not empty the register. Chapter 5.

\unkern ⟨primitive command⟩ Remove the last item of the list if this was a
kern. Chapter 8.

\unpenalty ⟨primitive command⟩ Remove the last item of the list if this was a
penalty. Chapter 27.

\unskip ⟨primitive command⟩ Remove the last item of the list if this was a
skip. Chapter 8.

\unvbox⟨8-bit number⟩ ⟨vertical command⟩ Unpack a box register containing
a vertical box, appending the contents to the list, and emptying the register.
Chapter 5.

\unvcopy⟨8-bit number⟩ ⟨vertical command⟩ The same as \unvbox, but do not
empty the register. Chapter 5.

\uppercase⟨general text⟩ ⟨primitive command⟩ Convert the argument to its
uppercase form. Chapter 3.

\vadjust⟨filler⟩{⟨vertical mode material⟩} ⟨primitive command⟩ Specify
in horizontal mode material for the enclosing vertical list. Chapter 6.

\valign⟨box specification⟩{⟨alignment material⟩} ⟨horizontal command⟩
Vertical alignment. Chapter 25.

\vbadness ⟨integer parameter⟩ Threshold below which overfull and underfull
vertical boxes are not shown. Plain TEX default: 1000. Chapter 5.

326 第 37 章 Glossary of TEX Primitives

\vbox⟨box specification⟩{⟨vertical material⟩} ⟨primitive command⟩
Construct a vertical box with reference point on the last item. Chapter 5.

\vcenter⟨box specification⟩{⟨vertical material⟩} ⟨primitive command⟩
Construct a vertical box vertically centred on the math axis. Chapter 23.

\vfil ⟨vertical command⟩ Vertical skip equivalent to \vskip 0cm plus 1fil.
Chapter 8.

\vfill ⟨vertical command⟩ Vertical skip equivalent to
\vskip 0cm plus 1fill. Chapter 8.

\vfilneg ⟨vertical command⟩ Vertical skip equivalent to
\vskip 0cm minus 1fil. Chapter 8.

\vfuzz ⟨dimen parameter⟩ Excess size that TEX tolerates before it considers a
vertical box overfull. Plain TEX default: 0.1pt. Chapter 5.

\voffset ⟨dimen parameter⟩ Distance by which the page is shifted down from
the reference point, which is one inch from the top of the page. Chapter 26.

\vrule ⟨horizontal command⟩ Rule that spreads in vertical direction.
Chapter 9.

\vsize ⟨dimen parameter⟩ Height of the page box. Chapter 5,26.

\vskip⟨glue⟩ ⟨vertical command⟩ Insert in vertical mode a glue item.
Chapter 8.

\vsplit⟨8-bit number⟩to⟨dimen⟩ ⟨primitive command⟩ Split off the top part
of a vertical box. Chapter 5,27.

\vss ⟨vertical command⟩ Vertical skip equivalent to
\vskip 0cm plus 1fil minus 1fil. Chapter 8.

\vtop⟨box specification⟩{⟨vertical material⟩} ⟨primitive command⟩
Construct a vertical box with reference point on the first item. Chapter 5.

\wd⟨8-bit number⟩ ⟨internal dimen⟩; the control sequence itself is a ⟨box
dimension⟩. Width of the box in a box register. Chapter 5.

\widowpenalty ⟨integer parameter⟩ Additional penalty for breaking a page
before the last line of a paragraph. Default 150 in plain TEX. Chapter 27.

\write⟨number⟩⟨general text⟩ ⟨primitive command⟩ Generate a whatsit item
containing a token list to be written to the terminal or to a file. Chapter 30.

\xdef ⟨def⟩ Synonym for \global\edef. Chapter 11.

\xleaders ⟨leaders⟩ As \leaders, but with box leaders any excess space is
spread equally between the boxes. Chapter 9.

\xspaceskip ⟨glue parameter⟩ Interword glue if non-zero and

327

\spacefactor ≥ 2000. Chapter 20.

\year ⟨integer parameter⟩ The year of the current job. Chapter 33.

第 38 章 编码表格

328

38.1 字符编码表 329

38.1 字符编码表

38.1.1 ASCII 字符编码

ASCII CHARACTER CODES

dec

CHAR
hex oct

b7
b6

b5

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1
BITS

b4 b3 b2 b1
CONTROL

SYMBOLS
NUMBERS

UPPERCASE LOWERCASE

0 0 0 0
0

NUL
0 0

16

DLE
10 20

32

SP
20 40

48

0
30 60

64

@
40 100

80

P
50 120

96

‘
60 140

112

p
70 160

0 0 0 1
1

SOH
1 1

17

DC1
11 21

33

!
21 41

49

1
31 61

65

A
41 101

81

Q
51 121

97

a
61 141

113

q
71 161

0 0 1 0
2

STX
2 2

18

DC2
12 22

34

”
22 42

50

2
32 62

66

B
42 102

82

R
52 122

98

b
62 142

114

r
72 162

0 0 1 1
3

ETX
3 3

19

DC3
13 23

35

#
23 43

51

3
33 63

67

C
43 103

83

S
53 123

99

c
63 143

115

s
73 163

0 1 0 0
4

EOT
4 4

20

DC4
14 24

36

$
24 44

52

4
34 64

68

D
44 104

84

T
54 124

100

d
64 144

116

t
74 164

0 1 0 1
5

ENQ
5 5

21

NAK
15 25

37

%
25 45

53

5
35 65

69

E
45 105

85

U
55 125

101

e
65 145

117

u
75 165

0 1 1 0
6

ACK
6 6

22

SYN
16 26

38

&
26 46

54

6
36 66

70

F
46 106

86

V
56 126

102

f
66 146

118

v
76 166

0 1 1 1
7

BEL
7 7

23

ETB
17 27

39

’
27 47

55

7
37 67

71

G
47 107

87

W
57 127

103

g
67 147

119

w
77 167

1 0 0 0
8

BS
8 10

24

CAN
18 30

40

(
28 50

56

8
38 70

72

H
48 110

88

X
58 130

104

h
68 150

120

x
78 170

1 0 0 1
9

HT
9 11

25

EM
19 31

41

)
29 51

57

9
39 71

73

I
49 111

89

Y
59 131

105

i
69 151

121

y
79 171

1 0 1 0
10

LF
A 12

26

SUB
1A 32

42

*
2A 52

58

:
3A 72

74

J
4A 112

90

Z
5A 132

106

j
6A 152

122

z
7A 172

1 0 1 1
11

VT
B 13

27

ESC
1B 33

43

+
2B 53

59

;
3B 73

75

K
4B 113

91

[
5B 133

107

k
6B 153

123

{
7B 173

1 1 0 0
12

FF
C 14

28

FS
1C 34

44

,
2C 54

60

<
3C 74

76

L
4C 114

92

\
5C 134

108

l
6C 154

124

|
7C 174

1 1 0 1
13

CR
D 15

29

GS
1D 35

45

−
2D 55

61

=
3D 75

77

M
4D 115

93

]
5D 135

109

m
6D 155

125

}
7D 175

1 1 1 0
14

SO
E 16

30

RS
1E 36

46

.
2E 56

62

>
3E 76

78

N
4E 116

94

^
5E 136

110

n
6E 156

126

~
7E 176

1 1 1 1
15

SI
F 17

31

US
1F 37

47

/
2F 57

63

?
3F 77

79

O
4F 117

95

_
5F 137

111

o
6F 157

127

DEL
7F 177

330 第 38 章 编码表格

38.1.2 TEX 字符编码

TEX CHARACTER CODES

dec

CHAR
hex oct

b7
b6

b5

0
0

0

0
0

1

0
1

0

0
1

1

1
0

0

1
0

1

1
1

0

1
1

1
BITS

b4 b3 b2 b1
CONTROL

SYMBOLS
NUMBERS

UPPERCASE LOWERCASE

0 0 0 0
0

^^@
0 0

16

^^P
10 20

32

SP
20 40

48

0
30 60

64

@
40 100

80

P
50 120

96

‘
60 140

112

p
70 160

0 0 0 1
1

^^A
1 1

17

^^Q
11 21

33

!
21 41

49

1
31 61

65

A
41 101

81

Q
51 121

97

a
61 141

113

q
71 161

0 0 1 0
2

^^B
2 2

18

^^R
12 22

34

”
22 42

50

2
32 62

66

B
42 102

82

R
52 122

98

b
62 142

114

r
72 162

0 0 1 1
3

^^C
3 3

19

^^S
13 23

35

#
23 43

51

3
33 63

67

C
43 103

83

S
53 123

99

c
63 143

115

s
73 163

0 1 0 0
4

^^D
4 4

20

^^T
14 24

36

$
24 44

52

4
34 64

68

D
44 104

84

T
54 124

100

d
64 144

116

t
74 164

0 1 0 1
5

^^E
5 5

21

^^U
15 25

37

%
25 45

53

5
35 65

69

E
45 105

85

U
55 125

101

e
65 145

117

u
75 165

0 1 1 0
6

^^F
6 6

22

^^V
16 26

38

&
26 46

54

6
36 66

70

F
46 106

86

V
56 126

102

f
66 146

118

v
76 166

0 1 1 1
7

^^G
7 7

23

^^W
17 27

39

’
27 47

55

7
37 67

71

G
47 107

87

W
57 127

103

g
67 147

119

w
77 167

1 0 0 0
8

^^H
8 10

24

^^X
18 30

40

(
28 50

56

8
38 70

72

H
48 110

88

X
58 130

104

h
68 150

120

x
78 170

1 0 0 1
9

^^I
9 11

25

^^Y
19 31

41

)
29 51

57

9
39 71

73

I
49 111

89

Y
59 131

105

i
69 151

121

y
79 171

1 0 1 0
10

^^J
A 12

26

^^Z
1A 32

42

*
2A 52

58

:
3A 72

74

J
4A 112

90

Z
5A 132

106

j
6A 152

122

z
7A 172

1 0 1 1
11

^^K
B 13

27

^^[
1B 33

43

+
2B 53

59

;
3B 73

75

K
4B 113

91

[
5B 133

107

k
6B 153

123

{
7B 173

1 1 0 0
12

^^L
C 14

28

^^\
1C 34

44

,
2C 54

60

<
3C 74

76

L
4C 114

92

\
5C 134

108

l
6C 154

124

|
7C 174

1 1 0 1
13

^^M
D 15

29

^^]
1D 35

45

−
2D 55

61

=
3D 75

77

M
4D 115

93

]
5D 135

109

m
6D 155

125

}
7D 175

1 1 1 0
14

^^N
E 16

30

^^^
1E 36

46

.
2E 56

62

>
3E 76

78

N
4E 116

94

^
5E 136

110

n
6E 156

126

~
7E 176

1 1 1 1
15

^^O
F 17

31

^^__
1F 37

47

/
2F 57

63

?
3F 77

79

O
4F 117

95

_
5F 137

111

o
6F 157

127

^^?
7F 177

38.2 计算机现代字体 331

38.2 计算机现代字体

38.2.1 计算机现代罗马字体

COMPUTER MODERN ROMAN FONT LAYOUT
0

Γ
0 0

16

ı
10 20

32

20 40

48

0
30 60

64

@
40 100

80

P
50 120

96

‘
60 140

112

p
70 160

1

∆
1 1

17

ȷ
11 21

33

!
21 41

49

1
31 61

65

A
41 101

81

Q
51 121

97

a
61 141

113

q
71 161

2

Θ
2 2

18

`
12 22

34

”
22 42

50

2
32 62

66

B
42 102

82

R
52 122

98

b
62 142

114

r
72 162

3

Λ
3 3

19

´
13 23

35

#
23 43

51

3
33 63

67

C
43 103

83

S
53 123

99

c
63 143

115

s
73 163

4

Ξ
4 4

20

ˇ
14 24

36

$
24 44

52

4
34 64

68

D
44 104

84

T
54 124

100

d
64 144

116

t
74 164

5

Π
5 5

21

˘
15 25

37

%
25 45

53

5
35 65

69

E
45 105

85

U
55 125

101

e
65 145

117

u
75 165

6

Σ
6 6

22

¯
16 26

38

&
26 46

54

6
36 66

70

F
46 106

86

V
56 126

102

f
66 146

118

v
76 166

7

Υ
7 7

23

˚
17 27

39

’
27 47

55

7
37 67

71

G
47 107

87

W
57 127

103

g
67 147

119

w
77 167

8

Φ
8 10

24

¸
18 30

40

(
28 50

56

8
38 70

72

H
48 110

88

X
58 130

104

h
68 150

120

x
78 170

9

Ψ
9 11

25

ß
19 31

41

)
29 51

57

9
39 71

73

I
49 111

89

Y
59 131

105

i
69 151

121

y
79 171

10

Ω
A 12

26

æ
1A 32

42

*
2A 52

58

:
3A 72

74

J
4A 112

90

Z
5A 132

106

j
6A 152

122

z
7A 172

11

ff
B 13

27

œ
1B 33

43

+
2B 53

59

;
3B 73

75

K
4B 113

91

[
5B 133

107

k
6B 153

123

–
7B 173

12

fi
C 14

28

ø
1C 34

44

,
2C 54

60

¡
3C 74

76

L
4C 114

92

“
5C 134

108

l
6C 154

124

—
7C 174

13

fl
D 15

29

Æ
1D 35

45

-
2D 55

61

=
3D 75

77

M
4D 115

93

]
5D 135

109

m
6D 155

125

˝
7D 175

14

ffi
E 16

30

Œ
1E 36

46

.
2E 56

62

¿
3E 76

78

N
4E 116

94

ˆ
5E 136

110

n
6E 156

126

˜
7E 176

15

ffl
F 17

31

Ø
1F 37

47

/
2F 57

63

?
3F 77

79

O
4F 117

95

˙
5F 137

111

o
6F 157

127

¨
7F 177

332 第 38 章 编码表格

38.2.2 计算机现代打字机字体

COMPUTER MODERN TYPEWRITER FONT LAYOUT
0

�
0 0

16

�
10 20

32

20 40

48

0
30 60

64

@
40 100

80

P
50 120

96

`
60 140

112

p
70 160

1

�
1 1

17

�
11 21

33

!
21 41

49

1
31 61

65

A
41 101

81

Q
51 121

97

a
61 141

113

q
71 161

2

�
2 2

18

�
12 22

34

"
22 42

50

2
32 62

66

B
42 102

82

R
52 122

98

b
62 142

114

r
72 162

3

�
3 3

19

�
13 23

35

#
23 43

51

3
33 63

67

C
43 103

83

S
53 123

99

c
63 143

115

s
73 163

4

�
4 4

20

�
14 24

36

$
24 44

52

4
34 64

68

D
44 104

84

T
54 124

100

d
64 144

116

t
74 164

5

�
5 5

21

�
15 25

37

%
25 45

53

5
35 65

69

E
45 105

85

U
55 125

101

e
65 145

117

u
75 165

6

�
6 6

22

�
16 26

38

&
26 46

54

6
36 66

70

F
46 106

86

V
56 126

102

f
66 146

118

v
76 166

7

�
7 7

23

�
17 27

39

'
27 47

55

7
37 67

71

G
47 107

87

W
57 127

103

g
67 147

119

w
77 167

8

�
8 10

24

�
18 30

40

(
28 50

56

8
38 70

72

H
48 110

88

X
58 130

104

h
68 150

120

x
78 170

9

9 11

25

�
19 31

41

)
29 51

57

9
39 71

73

I
49 111

89

Y
59 131

105

i
69 151

121

y
79 171

10

A 12

26

�
1A 32

42

*
2A 52

58

:
3A 72

74

J
4A 112

90

Z
5A 132

106

j
6A 152

122

z
7A 172

11

�
B 13

27

�
1B 33

43

+
2B 53

59

;
3B 73

75

K
4B 113

91

[
5B 133

107

k
6B 153

123

{
7B 173

12

�
C 14

28

�
1C 34

44

,
2C 54

60

<
3C 74

76

L
4C 114

92

\
5C 134

108

l
6C 154

124

|
7C 174

13

D 15

29

�
1D 35

45

-
2D 55

61

=
3D 75

77

M
4D 115

93

]
5D 135

109

m
6D 155

125

}
7D 175

14

�
E 16

30

�
1E 36

46

.
2E 56

62

>
3E 76

78

N
4E 116

94

^
5E 136

110

n
6E 156

126

~
7E 176

15

�
F 17

31

�
1F 37

47

/
2F 57

63

?
3F 77

79

O
4F 117

95

_
5F 137

111

o
6F 157

127

�
7F 177

38.2 计算机现代字体 333

38.2.3 计算机现代意大利字体

COMPUTER MODERN ITALIC FONT LAYOUT
0

Γ
0 0

16

ı
10 20

32

20 40

48

0
30 60

64

@
40 100

80

P
50 120

96

‘
60 140

112

p
70 160

1

∆
1 1

17

ȷ
11 21

33

!
21 41

49

1
31 61

65

A
41 101

81

Q
51 121

97

a
61 141

113

q
71 161

2

Θ
2 2

18

`
12 22

34

”
22 42

50

2
32 62

66

B
42 102

82

R
52 122

98

b
62 142

114

r
72 162

3

Λ
3 3

19

´
13 23

35

#
23 43

51

3
33 63

67

C
43 103

83

S
53 123

99

c
63 143

115

s
73 163

4

Ξ
4 4

20

ˇ
14 24

36

£
24 44

52

4
34 64

68

D
44 104

84

T
54 124

100

d
64 144

116

t
74 164

5

Π
5 5

21

˘
15 25

37

%
25 45

53

5
35 65

69

E
45 105

85

U
55 125

101

e
65 145

117

u
75 165

6

Σ
6 6

22

¯
16 26

38

&
26 46

54

6
36 66

70

F
46 106

86

V
56 126

102

f
66 146

118

v
76 166

7

Υ
7 7

23

˚
17 27

39

’
27 47

55

7
37 67

71

G
47 107

87

W
57 127

103

g
67 147

119

w
77 167

8

Φ
8 10

24

¸
18 30

40

(
28 50

56

8
38 70

72

H
48 110

88

X
58 130

104

h
68 150

120

x
78 170

9

Ψ
9 11

25

ß
19 31

41

)
29 51

57

9
39 71

73

I
49 111

89

Y
59 131

105

i
69 151

121

y
79 171

10

Ω
A 12

26

æ
1A 32

42

*
2A 52

58

:
3A 72

74

J
4A 112

90

Z
5A 132

106

j
6A 152

122

z
7A 172

11

ff
B 13

27

œ
1B 33

43

+
2B 53

59

;
3B 73

75

K
4B 113

91

[
5B 133

107

k
6B 153

123

–
7B 173

12

fi
C 14

28

ø
1C 34

44

,
2C 54

60

¡
3C 74

76

L
4C 114

92

“
5C 134

108

l
6C 154

124

—
7C 174

13

fl
D 15

29

Æ
1D 35

45

-
2D 55

61

=
3D 75

77

M
4D 115

93

]
5D 135

109

m
6D 155

125

˝
7D 175

14

ffi
E 16

30

Œ
1E 36

46

.
2E 56

62

¿
3E 76

78

N
4E 116

94

ˆ
5E 136

110

n
6E 156

126

˜
7E 176

15

ffl
F 17

31

Ø
1F 37

47

/
2F 57

63

?
3F 77

79

O
4F 117

95

˙
5F 137

111

o
6F 157

127

¨
7F 177

334 第 38 章 编码表格

38.2.4 计算机现代符号字体

COMPUTER MODERN SYMBOL FONT
0

−
0 0

16

≍
10 20

32

←
20 40

48

′
30 60

64

ℵ
40 100

80

P
50 120

96

⊢
60 140

112 √
70 160

1

·
1 1

17

≡
11 21

33

→
21 41

49

∞
31 61

65

A
41 101

81

Q
51 121

97

⊣
61 141

113

⨿
71 161

2

×
2 2

18

⊆
12 22

34

↑
22 42

50

∈
32 62

66

B
42 102

82

R
52 122

98

⌊
62 142

114

∇
72 162

3

∗
3 3

19

⊇
13 23

35

↓
23 43

51

∋
33 63

67

C
43 103

83

S
53 123

99

⌋
63 143

115

∫
73 163

4

÷
4 4

20

≤
14 24

36

↔
24 44

52

△
34 64

68

D
44 104

84

T
54 124

100

⌈
64 144

116

⊔
74 164

5

⋄
5 5

21

≥
15 25

37

↗
25 45

53

▽
35 65

69

E
45 105

85

U
55 125

101

⌉
65 145

117

⊓
75 165

6

±
6 6

22

≼
16 26

38

↘
26 46

54

̸
36 66

70

F
46 106

86

V
56 126

102

{
66 146

118

⊑
76 166

7

∓
7 7

23

≽
17 27

39

≃
27 47

55

7
37 67

71

G
47 107

87

W
57 127

103

}
67 147

119

⊒
77 167

8

⊕
8 10

24

∼
18 30

40

⇐
28 50

56

∀
38 70

72

H
48 110

88

X
58 130

104

⟨
68 150

120

§
78 170

9

⊖
9 11

25

≈
19 31

41

⇒
29 51

57

∃
39 71

73

I
49 111

89

Y
59 131

105

⟩
69 151

121

†
79 171

10

⊗
A 12

26

⊂
1A 32

42

⇑
2A 52

58

¬
3A 72

74

J
4A 112

90

Z
5A 132

106

|
6A 152

122

‡
7A 172

11

⊘
B 13

27

⊃
1B 33

43

⇓
2B 53

59

∅
3B 73

75

K
4B 113

91

∪
5B 133

107

∥
6B 153

123

¶
7B 173

12

⊙
C 14

28

≪
1C 34

44

⇔
2C 54

60

ℜ
3C 74

76

L
4C 114

92

∩
5C 134

108

↕
6C 154

124

♣
7C 174

13

⃝
D 15

29

≫
1D 35

45

↖
2D 55

61

ℑ
3D 75

77

M
4D 115

93

⊎
5D 135

109

⇕
6D 155

125

♢
7D 175

14

◦
E 16

30

≺
1E 36

46

↙
2E 56

62

⊤
3E 76

78

N
4E 116

94

∧
5E 136

110

\
6E 156

126

♡
7E 176

15

•
F 17

31

≻
1F 37

47

∝
2F 57

63

⊥
3F 77

79

O
4F 117

95

∨
5F 137

111

≀
6F 157

127

♠
7F 177

38.2 计算机现代字体 335

38.2.5 计算机现代数学扩展字体

COMPUTER MODERN MATH EXTENSION FONT
0 (
0 0

16 (
10 20

32 (
20 40

48 
30 60

64 
40 100

80 ∑
50 120

96 ⨿
60 140

112 √
70 160

1)
1 1

17)
11 21

33)
21 41

49 
31 61

65 
41 101

81 ∏
51 121

97 ⨿
61 141

113 √
71 161

2 [
2 2

18 (
12 22

34 [
22 42

50 
32 62

66 
42 102

82 ∫
52 122

98 ̂
62 142

114 √
72 162

3]
3 3

19)
13 23

35]
23 43

51 
33 63

67 
43 103

83 ∪
53 123

99 ̂
63 143

115 √
73 163

4 ⌊
4 4

20 [
14 24

36 ⌊
24 44

52 
34 64

68 ⟨
44 104

84 ∩
54 124

100 ̂
64 144

116 √
74 164

5 ⌋
5 5

21]
15 25

37 ⌋
25 45

53 
35 65

69 ⟩
45 105

85 ⊎
55 125

101 ˜
65 145

117 √
75 165

6 ⌈
6 6

22 ⌊
16 26

38 ⌈
26 46

54 
36 66

70 ⊔
46 106

86 ∧
56 126

102 ˜
66 146

118 √
76 166

7 ⌉
7 7

23 ⌋
17 27

39 ⌉
27 47

55 
37 67

71 ⊔
47 107

87 ∨
57 127

103˜
67 147

119 w
77 167

8 {
8 10

24 ⌈
18 30

40 {
28 50

56 
38 70

72 ∮
48 110

88 ∑
58 130

104 [
68 150

120 x
78 170

9 }
9 11

25 ⌉
19 31

41 }
29 51

57 
39 71

73 ∮
49 111

89 ∏
59 131

105]
69 151

121 y
79 171

10 ⟨
A 12

26 {
1A 32

42 ⟨
2A 52

58 
3A 72

74 ⊙
4A 112

90 ∫
5A 132

106 ⌊
6A 152

122 ︷
7A 172

11 ⟩
B 13

27 }
1B 33

43 ⟩
2B 53

59 
3B 73

75 ⊙
4B 113

91 ∪
5B 133

107 ⌋
6B 153

123 ︷
7B 173

12 ∣
C 14

28 ⟨
1C 34

44 /
2C 54

60 
3C 74

76 ⊕
4C 114

92 ∩
5C 134

108 ⌈
6C 154

124 ︸
7C 174

13 ∥
D 15

29 ⟩
1D 35

45 \
2D 55

61 
3D 75

77 ⊕
4D 115

93 ⊎
5D 135

109 ⌉
6D 155

125 ︸
7D 175

14 /
E 16

30 /
1E 36

46 /
2E 56

62 
3E 76

78 ⊗
4E 116

94 ∧
5E 136

110 {
6E 156

126 ~
7E 176

15 \
F 17

31 \
1F 37

47 \
2F 57

63 
3F 77

79 ⊗
4F 117

95 ∨
5F 137

111 }
6F 157

127 �
7F 177

336 第 38 章 编码表格

38.3 Plain TEX 数学符号

38.3.1 字符的数学码

下面列出的字符是用这个赋值定义的：

\mathcode⟨8-bit number⟩⟨equals⟩⟨15-bit number⟩

Character \mathcode Class Family Hex position
. "013A ordinary 1 3A
/ "013D 3D
\ "026E 2 6E
| "026A 6A
+ "202B binary operation 0 2B
- "2200 2 00
* "2203 03
: "303A relation 0 3A
= "303D 3D
< "313C 1 3C
> "313E 3E
("4028 open symbol 0 28
["405B 5B
{ "4266 2 66
! "5021 closing symbol 0 21
) "5029 29
? "503F 3F
] "505D 5D
} "5267 2 67
; "603B punctuation 0 3B
, "613B 1 3B
 "8000
' "8000
_ "8000

38.3.2 字符的定界码

下面列出的字符是用这个赋值定义的：

\delcode⟨8-bit number⟩⟨equals⟩⟨24-bit number⟩

它们可以与 \left和 \right一起使用。

38.3 Plain TEX 数学符号 337

small variant large variant
Character \delcode Family Hex position Family Hex position

("028300 0 28 3 00
) "029301 0 29 3 01
["05B302 0 5B 3 02
] "05D303 0 5D 3 03
< "26830A 2 68 3 0A
> "26930B 2 69 3 0B
/ "02F30E 0 2F 3 0E
| "26A30C 2 6A 3 0C
\ "26E30F 2 6E 3 0F

38.3.3 定义普通符号

下面列出的字符是用这个赋值定义的：

\mathchardef⟨control sequence⟩⟨equals⟩⟨15-bit number⟩

Symbol Control Sequence \mathcode Family Hex position
∂ \partial "0140 1 40
♭ \flat "015B 5B
♮ \natural "015C 5C
♯ \sharp "015D 5D
ℓ \ell "0160 60
ı \imath "017B 7B
ȷ \jmath "017C 7C
℘ \wp "017D 7D
′ \prime "0230 2 30
∞ \infty "0231 31
△ \triangle "0234 34
∀ \forall "0238 38
∃ \exists "0239 39
¬ \neg "023A 3A
∅ \emptyset "023B 3B
ℜ \Re "023C 3C
ℑ \Im "023D 3D
⊤ \top "023E 3E
⊥ \bot "023F 3F
ℵ \aleph "0240 40

338 第 38 章 编码表格

∇ \nabla "0272 72
♣ \clubsuit "027C 7C
♢ \diamondsuit "027D 7D
♡ \heartsuit "027E 7E
♠ \spadesuit "027F 7F

38.3.4 定义巨算符

下面列出的字符是用这个赋值定义的：

\mathchardef⟨control sequence⟩⟨equals⟩⟨15-bit number⟩

Symbol Control Sequence \mathcode Family Hex position
∫ ∫ \smallint "1273 2 73⊔⊔

\bigsqcup "1346 3 46∮ ∮
\ointop "1348 48⊙⊙
\bigodot "134A 4A⊕⊕
\bigoplus "134C 4C⊗⊗
\bigotimes "134E 4E∑∑
\sum "1350 50∏∏
\prod "1351 51∫ ∫
\intop "1352 52∪∪
\bigcup "1353 53∩∩
\bigcap "1354 54⊎⊎
\biguplus "1355 55∧∧
\bigwedge "1356 56∨∨
\bigvee "1357 57⨿⨿
\coprod "1360 60

38.3.5 定义二元运算符

下面列出的字符是用这个赋值定义的：

\mathchardef⟨control sequence⟩⟨equals⟩⟨15-bit number⟩

Symbol Control Sequence \mathcode Family Hex position
◃ \triangleright "212E 1 2E
▹ \triangleleft "212F 2F

38.3 Plain TEX 数学符号 339

⋆ \star "213F 3F
· \cdot "2201 2 01
× \times "2202 02
∗ \ast "2203 03
÷ \div "2204 04
⋄ \diamond "2205 05
± \pm "2206 06
∓ \mp "2207 07
⊕ \oplus "2208 08
⊖ \ominus "2209 09
⊗ \otimes "220A 0A
⊘ \oslash "220B 0B
⊙ \odot "220C 0C
⃝ \bigcirc "220D 0D
◦ \circ "220E 0E
• \bullet "220F 0F
△ \bigtriangleup "2234 34
▽ \bigtriangledown "2235 35
∪ \cup "225B 5B
∩ \cap "225C 5C
⊎ \uplus "225D 5D
∧ \wedge "225E 5E
∨ \vee "225F 5F
\ \setminus "226E 6E
≀ \wr "226F 6F
⨿ \amalg "2271 71
⊔ \sqcup "2274 74
⊓ \sqcap "2275 75
† \dagger "2279 79
‡ \ddagger "227A 7A

38.3.6 定义二元关系符

下面列出的字符是用这个赋值定义的：

\mathchardef⟨control sequence⟩⟨equals⟩⟨15-bit number⟩

Symbol Control Sequence \mathcode Family Hex position
↼ \leftharpoonup "3128 1 28
↽ \leftharpoondown "3129 29

340 第 38 章 编码表格

⇀ \rightharpoonup "312A 2A
⇁ \rightharpoondown "312B 2B
⌣ \smile "315E 5E
⌢ \frown "315F 5F
≍ \asymp "3210 2 10
≡ \equiv "3211 11
⊆ \subseteq "3212 12
⊇ \supseteq "3213 13
≤ \leq "3214 14
≥ \geq "3215 15
≼ \preceq "3216 16
≽ \succeq "3217 17
∼ \sim "3218 18
≈ \approx "3219 19
⊂ \subset "321A 1A
⊃ \supset "321B 1B
≪ \ll "321C 1C
≫ \gg "321D 1D
≺ \prec "321E 1E
≻ \succ "321F 1F
← \leftarrow "3220 20
→ \rightarrow "3221 21
↔ \leftrightarrow "3224 24
↗ \nearrow "3225 25
↘ \searrow "3226 26
≃ \simeq "3227 27
⇐ \Leftarrow "3228 28
⇒ \Rightarrow "3229 29
⇔ \Leftrightarrow "322C 2C
↖ \nwarrow "322D 2D
↙ \swarrow "322E 2E
∝ \propto "322F 2F
∈ \in "3232 32
∋ \ni "3233 33
̸ \not "3236 36
7 \mapstochar "3237 37
⊥ \perp "323F 3F
⊢ \vdash "3260 60

38.3 Plain TEX 数学符号 341

⊣ \dashv "3261 61
| \mid "326A 6A
∥ \parallel "326B 6B
⊑ \sqsubseteq "3276 76
⊒ \sqsupseteq "3277 77

38.3.7 定义定界符

下面列出的字符是用这个赋值定义的：

\def⟨control sequence⟩{\delimiter⟨27-bit number⟩}

Delimiters
Symbol Control Sequence Hex code Function \lmoustache "4000340 open symbol \rmoustache "5000341 closing symbol \lgroup "400033A open symbol \rgroup "500033B closing symbol
| \arrowvert "33C ordinary
∥ \Arrowvert "33D ordinary \bracevert "33E ordinary
∥ \Vert "26B30D ordinary
| \vert "26A30C ordinary
↑ \uparrow "3222378 relation
↓ \downarrow "3223379 relation
↕ \updownarrow "326C33F relation
⇑ \Uparrow "322A37E relation
⇓ \Downarrow "322B37F relation
⇕ \Updownarrow "326D377 relation
\ \backslash "26E30F ordinary
⟩ \rangle "526930B closing symbol
⟨ \langle "426830A open symbol
} \rbrace "5267309 closing symbol
{ \lbrace "4266308 open symbol
⌉ \rceil "5265307 closing symbol
⌈ \lceil "4264306 open symbol
⌋ \rfloor "5263305 closing symbol
⌊ \lfloor "4262304 open symbol

索引

^^ replacement, 30
tfm files, 53
dvi file, 288
~, 204

accents, 45
accents in math mode, 212
alignment tab, 238
alignments, 236–245

rules in, 243–244
arithmetic, 89

on glue, see glue, arithmetic on
assignment

box size, 65
font, 54
global, 54, 65, 114
local, 114

badness, 101
and line breaking, 191
calculation, 101

box
bounding, 55

boxes, 57–74
boxes

text in, 70
braces, 115–116
breakpoints

computation of, 252–253
breakpoints in math lists, 226

category
0, 27, 29, 137
1, 27, 68, 114, 118
2, 27, 68, 114, 115, 118
3, 27, 219, 230
4, 27, 238
5, 27, 37
6, 28, 119
7, 28, 31, 220
8, 28, 220
9, 28
10, 28, 29, 31, 36, 50, 53, 122, 141
11, 28, 29, 31, 45, 85, 154
12, 28, 36, 45, 50, 53, 85, 88, 90,

98, 122, 141, 152, 154, 297
13, 28, 125, 307
14, 28
15, 28, 30
16, 29, 46, 151

character
active, and \noexpand, 138
codes, 41
extendable, 210
hyphen, 195
implicit, 44
parameter, 122

code
lowercase, see lowercase, code
uppercase, see uppercase, code

codenames, 48

342

索引 343

commands
horizontal, 77
vertical, 77

Computer Modern, 292
conditionals, 149

evaluation of, 155
cramped styles, 219

date, 290
delimiter

size, 210–211
delimiter code, 209
delimiters, 209–211
demerits, 192
device driver, 290
device drivers, 291
discardable items, 76
discretionary hyphen, 195
discretionary item, 195
display alignment, 237
display math, 230
displays

non-centred, 234

equation numbering, 233–234
error patching, 301
escape

character, see character, escape
expansion, 132

expandable constructs, 133
extension font, 228

files, 270
fixed-point

arithmetic, 90
floating-point

arithmetic, 90
font

dimensions, 54
font families, 213

font files, 291–292
font metrics, 290
font tables, 334
fonts, 51
format file, 284
formula

axis of, 223
centring of, 223

frenchspacing, 205

generalized fractions, 225
glue, 92

arithmetic on, 96
setting, 101
shrink component of, 99
stretch component of, 99

horizontal alignment, 237
hyphenation, 196

I/O
asynchronous, 273
file, 270–276
screen, 273

indentation
hanging, 184–185

IniTEX, 283
input files, 270
insertions, 264
integer, 83
italic correction, 55

job, 280–281

kerning, 55
keywords, 307

language, 199
current, 199

languages, 196
LATEX, 287

344 索引

leaders, 107
rule, 108

ligatures, 56
line

end, 26
input, 26
width, 184

line breaking, 189
badness, 191

list
horizontal, 76
vertical, 76

lists
horizontal

breakpoints in, 191
log file, 281
Lollipop, 288
lowercase

code, 47

machine dependence, 232
machine independence, 26
magnification, 289
marks, 259
math characters, 208–209
math classes, 221
math mode, 219

display, 219
non-display, 219

math shift character, 219
math spacing, 223–225
math styles, 219
math symbols, lists of, 339
math units, 223
migrating material, 80
mode, 75

horizontal, 76
internal vertical, 78
restricted horizontal, 78

vertical, 76
mu glue, 223

number
conversion, 88

numbers, 83

output routine, 257–263
overflow errors, 302–305

page
breaking, 249–256
depth, 247–248
height, 247–248
length, 250–251
numbering, 261

page positioning, 246
paragraph

breaking into lines, 189
end, 179–182
shape, 183–188
start, 173–178

Pascal, 293
penalties in math mode, 226
point

scaled, 87
PostScript, 290
prefixes

macro, 118

quad, 223

radical, 211
registers

allocation of, 278–279
roman numerals, 88
rules, 105
run modes, 282

shrink, 99
slant

索引 345

per point, 46
space

control, 203
factor, 202
optional, 307

spacefactor code, 204
spacing, 201
specials, 290
statistics, 295
streams, 271
stretch, 99
subscript, 220
successor, 211
superscript, 220
symbol font, 227–228

table, character codes, 333
table, ascii, 332
tables, 236
tables, font, 334
TEX, 283
TEX, big, 303
TEX, version 2, 309
TEX, version 3, 67, 198, 268, 309
tie, 204
time, 290
token

list, 163
tracing, 295–299
TUG, 293
TUGboat, 293

units of measurement, 97
uppercase

code, 47

vertical alignment, 237
VirTEX, 283
virtual fonts, 291

web, 293
whatsits, 273

保存堆栈, 113

原始命令, 125
参数, 119

字符, 122
定界的, 120
非定界, 120

参量, 119
命令

原始的, 125
基线

距离, 168
备选内容, 250
字符, 32

空格符, 34
转义符, 31, 33

宏, 117
外部的, 118
定义, 118

当前页面, 250

惩罚
竖直模式中, 251

抄录模式, 131
控制

控制序列, 29
控制空格, 29

活动字符, 125

状态
内部, 29

空格
可选空格, 34
滑稽空格, 36
空格记号, 36

竖直模式的断点, 251
类别码, 27

346 索引

粘连
行间, 168

编组, 113
定界符, 114

花括号
显式, 114
隐式, 114

行
空白行, 33
终止符, 37

记号
空格记号, 34

输入
栈, 126

递归, 126
页面
构建器, 250

参考文献

[1] W. Appelt. TEX fr Fortgeschrittene. Addison-Wesley Verlag, 1988. 300

[2] B. Beeton. Controlling <ctrl-M>; ruling the depths. TUGboat, 9:182–183,
1988. 37

[3] B. Beeton. Additional font and glyph attributes for processing of mathe-
matics, 1991. document N1174 Rev.,of ISO/IEC JTC1/SC18/WG8. 224

[4] K. Berry. Eplain. TUGboat, 11:571–572, 1990. 282

[5] J. Braams. Babel, a language option for LATEX. TUGboat, 12:291–301,
1991. 195

[6] J. Braams, V. Eijkhout, and N.A.F.M. Poppelier. The development of na-
tional LATEX styles. TUGboat, 10:401–406, 1989. 282

[7] M.J. Downes. Line breaking in \unhboxed text. TUGboat, 11:605–612. 69

[8] V. Eijkhout. An indentation scheme. TUGboat, 11:613–616. 175

[9] V. Eijkhout. A paragraph skip scheme. TUGboat, 11:616–619. 175

[10] V. Eijkhout. Unusual paragraph shapes. TUGboat, 11:51–53. 73, 187

[11] V. Eijkhout. Oral TEX. TUGboat, 12:272–276, 1991. 147, 159

[12] V. Eijkhout and A. Lenstra. The document style designer as a separate
entity. TUGboat, 12:31–34, 1991. 283

[13] D. Guenther. TEX T1 goes public domain. TUGboat, 11:54–55, 1990. 282

[14] Hart’s Rules for Compositors and Readers at the Oxford University
Press. Oxford University Press, 1983. 39th edition. 203

[15] A. Hendrikson. MacroTEX, A TEX Macro Toolkit. TEX__nology Inc, 1991.
282

347

348 参考文献

[16] A. Jeffrey. Lists in TEX’s mouth. TUGboat, 11:237–245, 1990. 147

[17] D.E. Knuth. Computer Modern Typefaces. Addison-Wesley. 54

[18] D.E. Knuth. The errors of TEX. Software Practice and Experience,
19:607–681. 303

[19] D.E. Knuth. Literate programming. Computer J., 27:97–111. 287

[20] D.E. Knuth. The new versions of TEX and Metafont. TUGboat,
10:325–327. 55, 303

[21] D.E. Knuth. A torture test for TEX. Technical report, Stanford Computer
Science Report 1027, Stanford, California. 88

[22] D.E. Knuth. Typesetting concrete mathematics. TUGboat, 10:31–36. 287

[23] D.E. Knuth. TEX: the Program. Addison-Wesley, 1986. 42, 53, 278, 283,
285

[24] D.E. Knuth. Virtual fonts: more fun for grand wizards. TUGboat,
11:13–23, 1990. 51, 285

[25] D.E. Knuth. The TEX book. Addison-Wesley, reprinted with correc-
tions 1989. 36, 47, 296, 298

[26] D.E. Knuth and D.R. Fuchs. TEX ware. Technical report, 1986. Stanford
Computer Science report 86–1097. 285

[27] D.E. Knuth and M.F. Plass. Breaking paragraphs into lines. Software
practice and experience, 11:1119–1184, 1981. 189, 191

[28] G. Kuiken. Additional hyphenation patterns. TUGboat, 11:24–25, 1990.
195

[29] L. Lamport. LATEX, a Document Preparation System. Addison-Wesley,
1986. 282

[30] F.M. Liang. Word hy-phen-a-tion by com-pu-ter. PhD thesis, 1983. 195,
298

[31] S. Maus. Looking ahead for a ⟨box⟩. TUGboat, 11:612–613, 1990. 135

[32] S. Maus. An expansion power lemma. TUGboat, 12:277, 1991. 147

[33] F. Mittelbach and R. Schpf. LATEX3. TUGboat, 12. 282

参考文献 349

[34] F. Mittelbach and R. Schpf. With LATEX into the nineties. TUGboat,
10:681–690, 1989. 282

[35] E. Myers and F.E. Paige. TEX sis – TEX macros for physicists. Macros
and manual available by anonymous ftp from lifshitz.ph.utexas.edu
(128.83.131.57). 282

[36] H. Partl. German TEX. TUGboat, 9:70–72, 1988. 195

[37] Z. Rubinstein. Printing annotated chess literature in natural notation.
TUGboat, 10:387–390, 1989. 126

[38] D. Salomon. Output routines: Examples and techniques. part i: Introduc-
tion and examples. TUGboat, 11:69–85, 1990. 260

[39] D. Salomon. Output routines: Examples and techniques. part ii: OTR
techniques. TUGboat, 11:212–236, 1990. 260

[40] D. Salomon. Output routines: Examples and techniques. part iii: Inser-
tions. TUGboat, 11:588–605, 1990. 265

[41] W. Sewell. Weaving a Program: Literate Programming in WEB. Van Nos-
trand Reinhold, 1989. 287

[42] R. Southall. Designing a new typeface with metafont. In TEX for scientific
documentation, Lecture Notes in Computer Science 236. Springer Verlag,
1984. 51, 286

[43] M. Spivak. The Joy of TEX. American Mathematical Society, 1986. 282

[44] M. Spivak. LAMSTEX, the Synthesis. The TEX plorators Corporation,
1989. 282

[45] K. Thull. The virtual memory management of public TEX. TUGboat,
10:15–22, 1989. 297

[46] J. Tschichold. Ausgewhlte Aufstze ber Fragen der Gestalt des Buches und
der Typographie. Birkhuser Verlag, 1975. 181

[47] P. Tutelaers. A font and a style for typesetting chess using LATEX or plain
TEX. TUGboat, 13, 1991. 126

[48] D.B. Updike. Printing Types. Harvard University Press, 1937. (reprinted
1980, New York NY: Dover Publications). 287

350 参考文献

[49] S. von Bechtolsheim. A tutorial on \futurelet. TUGboat, 9:276–278, 1988.
128

[50] M. Vox. Caractère, 1955. 287

[51] M. Weinstein. Everything you wanted to know about phyzzx but didn’t
know to ask. Technical report, 1984. Stanford Linear Accelerator Publi-
cation, SLAC-TN-84-7. 282

[52] J.V. White. Graphic Design for the Electronic Age. Watson-Guptill, 1988.
170

版本历史

Vection 1.4
Reinstated a couple of figures (baseline distance, plus one one paragraph

shape that didn’t make it into the original book.)

Version 1.3
Finally managed to reinstate the tables chapter.
Starting to add more concepts to the index.

Version 1.2
Added chapter references to glossary.
Fixed a bunch of typographic accidents.

Version 1.1
Small remark about \afterassignment after macro definitions.
Trouble with indexing macros fixed, I hope.
Separate letter and a4 versions.
Better intro for the chapter 20 on spacing.

351

	目录
	许可证
	前言
	1 TeX 处理器的结构
	1.1 TeX 的 4 个处理器
	1.2 输入处理器
	1.3 展开处理器
	1.4 执行处理器
	1.5 可视化处理器
	1.6 示例

	2 类别码与内部状态
	2.1 概述
	2.2 初始处理
	2.3 类别码
	2.4 从字符到记号
	2.5 输入处理器视为有限状态自动机
	2.6 所有字符皆可信手拈来
	2.7 内部状态切换
	2.8 字母符与其他字符
	2.9 \par 记号
	2.10 空格
	2.11 行结束符的更多知识
	2.12 输入处理器的更多知识
	2.13 @ 约定

	3 字符
	3.1 字符编码
	3.2 用于字符的控制序列
	3.3 Accents
	3.4 Testing characters
	3.5 Uppercase and lowercase
	3.6 Codes of a character
	3.7 Converting tokens into character strings

	4 Fonts
	4.1 Fonts
	4.2 Font declaration
	4.3 Font information

	5 Boxes
	5.1 Boxes
	5.2 Box registers
	5.3 Natural dimensions of boxes
	5.4 More about box dimensions
	5.5 Overfull and underfull boxes
	5.6 Opening and closing boxes
	5.7 Unboxing
	5.8 Text in boxes
	5.9 Assorted remarks

	6 Horizontal and Vertical Mode
	6.1 Horizontal and vertical mode
	6.2 Horizontal and vertical commands
	6.3 The internal modes
	6.4 Boxes and modes
	6.5 Modes and glue
	6.6 Migrating material
	6.7 Testing modes

	7 Numbers
	7.1 Numbers and <number>s
	7.2 Integers
	7.3 Numbers
	7.4 Integer registers
	7.5 Arithmetic
	7.6 Number testing
	7.7 Remarks

	8 Dimensions and Glue
	8.1 Definition of <glue> and <dimen>
	8.2 More about dimensions
	8.3 More about glue

	9 Rules and Leaders
	9.1 Rules
	9.2 Leaders
	9.3 Assorted remarks

	10 编组
	10.1 编组机制
	10.2 局部和全局赋值
	10.3 编组定界符
	10.4 花括号进阶

	11 宏定义
	11.1 介绍
	11.2 宏定义的结构
	11.3 前缀
	11.4 定义的类型
	11.5 参数文本
	11.6 构造控制序列
	11.7 用 \let 和 \futurelet 给出记号赋值
	11.8 杂项注记
	11.9 宏的技巧

	12 Expansion
	12.1 Introduction
	12.2 Ordinary expansion
	12.3 Reversing expansion order
	12.4 Preventing expansion
	12.5 \relax
	12.6 Examples

	13 Conditionals
	13.1 The shape of conditionals
	13.2 Character and control sequence tests
	13.3 Mode tests
	13.4 Numerical tests
	13.5 Other tests
	13.6 The \newif macro
	13.7 Evaluation of conditionals
	13.8 Assorted remarks

	14 Token Lists
	14.1 Token lists
	14.2 Use of token lists
	14.3 <token parameter>
	14.4 Token list registers
	14.5 Examples

	15 基线距离
	15.1 行间粘连
	15.2 盒子深度
	15.3 术语
	15.4 补充说明

	16 Paragraph Start
	16.1 When does a paragraph start
	16.2 What happens when a paragraph starts
	16.3 Assorted remarks
	16.4 Examples

	17 Paragraph End
	17.1 The way paragraphs end
	17.2 Assorted remarks

	18 段落形状
	18.1 文本行的宽度
	18.2 段落形状参数
	18.3 杂项注记

	19 Line Breaking
	19.1 Paragraph break cost calculation
	19.2 The process of breaking
	19.3 Discretionaries
	19.4 Hyphenation
	19.5 Switching hyphenation patterns

	20 Spacing
	20.1 Introduction
	20.2 Automatic interword space
	20.3 User interword space
	20.4 Control space and tie
	20.5 More on the space factor

	21 Characters in Math Mode
	21.1 Mathematical characters
	21.2 Delimiters
	21.3 Radicals
	21.4 Math accents

	22 Fonts in Formulas
	22.1 Determining the font of a character in math mode
	22.2 Initial family settings
	22.3 Family definition
	22.4 Some specific font changes
	22.5 Assorted remarks

	23 Mathematics Typesetting
	23.1 Math modes
	23.2 Styles in math mode
	23.3 Classes of mathematical objects
	23.4 Large operators and their limits
	23.5 Vertical centring: \vcenter
	23.6 Mathematical spacing: mu glue
	23.7 Generalized fractions
	23.8 Underlining, overlining
	23.9 Line breaking in math formulas
	23.10 Font dimensions of families 2 and 3

	24 Display Math
	24.1 Displays
	24.2 Displays in paragraphs
	24.3 Vertical material around displays
	24.4 Glue setting of the display math list
	24.5 Centring the display formula: displacement
	24.6 Equation numbers
	24.7 Non-centred displays

	25 Alignment
	25.1 Introduction
	25.2 Horizontal and vertical alignment
	25.3 The preamble
	25.4 The alignment
	25.5 Example: math alignments

	26 Page Shape
	26.1 The reference point for global positioning
	26.2 \topskip
	26.3 Page height and depth

	27 分页
	27.1 当前页面与备选内容
	27.2 激活页面构建器
	27.3 页面长度的记录
	27.4 分页点
	27.5 分割竖直列
	27.6 分页的例子

	28 Output Routines
	28.1 The \output token list
	28.2 Output and \box255
	28.3 Marks
	28.4 Assorted remarks

	29 Insertions
	29.1 Insertion items
	29.2 Insertion class declaration
	29.3 Insertion parameters
	29.4 Moving insertion items from the contributions list
	29.5 Insertions in the output routine
	29.6 Plain TeX insertions

	30 File Input and Output
	30.1 Including files: \input and \endinput
	30.2 File I/O
	30.3 Whatsits
	30.4 Assorted remarks

	31 Allocation
	31.1 Allocation commands
	31.2 Ground rules for macro writers

	32 Running TeX
	32.1 Jobs
	32.2 Run modes

	33 TeX and the Outside World
	33.1 TeX, IniTeX, VirTeX
	33.2 More about formats
	33.3 The dvi file
	33.4 Specials
	33.5 Time
	33.6 Fonts
	33.7 TeX and web
	33.8 The TeX Users Group

	34 Tracing
	34.1 Meaning and content: \show, \showthe, \meaning
	34.2 Show boxes: \showbox, \tracingoutput
	34.3 Global statistics

	35 Errors, Catastrophes, and Help
	35.1 Error messages
	35.2 Overflow errors

	36 The Grammar of TeX
	36.1 Notations
	36.2 Keywords
	36.3 Specific grammatical terms
	36.4 Differences between TeX versions 2 and 3

	37 Glossary of TeX Primitives
	38 编码表格
	38.1 字符编码表
	38.2 计算机现代字体
	38.3 Plain TeX 数学符号

	索引
	参考文献
	版本历史

